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According to Berry, quantum states of a hamiltonian which varies
adiabatically through a circuit C in parameter space may acquire geometrical
phase factors exp (iγ(C))  in addition to the normal dynamical phase factors
exp ((-i/r?) f E(t) dt). We present N.M.R. experiments in the rotating frame
which bear out these predictions for simple conical circuits, and point out that
they are related to familiar behaviour based on the classical Bloch equations
and on Haeberlen-Waugh coherent averaging theory. Extensions to coupled
spins and electric quadrupolar effects are discussed.

1. Introduction
A system prepared in an eigenstate of a slowly varying hamiltonian remains in

an eigenstate of the instantaneous hamiltonian [l]. In 1984, Berry pointed out [2]
that in a cyclic adiabatic process, that is one in which the slowly time varying
hamiltonian returns to its original form via a circuit C ,  a quantum state may
acquire a 'geometrical’ phase factor exp (iγ(C)) in addition to the ‘normal ’ dynami-
cal phase factor exp (( -$5) ∫ Em(t) &). In an elegant calculation, Berry showed that
if the circuit occurs in the vicity of a degeneracy of the hamiltonian in parameter
space, then the geometrical phase is proportional to the solid angle Q subtended by
the circuit at the degeneracy.

As an illustrative example, Berry considered spins in a magnetic field character-
ized by slowly varying parameters R as depicted in figure 1. The hamiltonian for
this system has a degeneracy at R = 0 where E = 0. For the simplest case of a cone,
6 constant, the solid angle is 0 = 27r( 1 - cos 0). Imagine that such a conical circuit
is traversed adiabatically, that is with small 6, where C = 27r/T and T is the period
of’ the circuit. A spin eigenstate with magnetic quantum number m should accumu-
late a geometrical phase y(C) = 2rnn(l -
nril J B(L) &, where yI

cos 0) in addition to the dynamical phase
is the magnetogyric ratio.

Wlczek and co-workers [3] and Cina [4] have suggested that a manifestation of
the geometrical phase should be observed in interference between eigenstates, for
example in the evolution of a coherent superposition of states m and VZ’. Such a
superposition corresponds to magnetization or to higher rank tensor coherences [SJ
and the phase changes of such coherences have been observed for states in N.M.R.
undergoing non-adiabatic circuits [6]. Upon completion of an adiabatic circuit, a
coherence should acquire a geometrical phase change or extra rotation, +g = 7JC)
- Ye*, in addition to the dynamical precession angle 4d. For the case of a
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Figure 1. Berry’s experiment for spins in a magnetic field. A field of magnitude B moves
adiabatically through a circuit of parameters R in the laboratory. The experiments in
this paper deal with simple conical circuits in the rotating frame for which 1 B 1 and 6
are constant. The considerations are similar if B is the axis in zero field of a dipolar
coupled spin-l/2 pair or spin-l with electric quadrupole coupling.

magnetic field of constant magnitude 1 E 1 = CO&~ and constant angle E in figure 1

+g = (m - m’)Q = 2xAm(l - cos 0). (2)

Chiao et al. [7] have reported a classical optical version of such an experiment
in which the plane of linearly polarized light (which corresponds to a superposition
of the m = k 1 photon states) was rotated by a geometrical phase imposed by
helically wound optical fibers. Tycko [8] has recently performed a nuclear quadru-
pole resonance experiment in which the geometrical phase of a spin-3/2 was
observed during rotation of a crystal, thereby moving the quantization axis of the
electric field gradient in a cone. The geometrical phase is also related to early work
on fractional quantum numbers [9] in molecules and the classical work on conical
intersections by Herzberg and Longuet-Higgins [lo]. Indeed, Mead and Truhlar
had earlier used the concept of a geometrical phase in their discussion of conical
intersections [l 11.

In the present paper we outhne N.M.R. experiments that measure the geometri-
cal phase acquired by a spin-l/2 in a magnetic field of constant magnitude and
varying direction in the rotating frame [3]. The experiments and corresponding
treatment cover the range from the adiabatic limit (6 small), which yields Berry’s
geometrical phase, to the non-adiabatic regime characteristic of resonant processes.
Such circuits are well known in N.M.R. experiments which involve precisely such
combinations of static and rotating fields. We also relate the adiabatic behaviour to
well-known coherent averaging phenomena in pulsed and iterative N.M.R. schemes
which exploit geometrical scaling of resonance frequency differences and spin-spin
couplings [ 12, 131.
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2. N.M.R. experiment

The experiment might be conducted in the laboratory frame using the methods
of pure N.Q.R. [ 141 or zero field N.M.R. [1.5], but we prefer the inherently greater
sensitivity of high frequency N.M.R. in a high field magnet as suggested by Wilczek
and co-workers [3]. To recall how the adiabatic circuits of figure 1 can be impie-
mented in such circumstances, we refer to figure 2. An ensemble of spin-l/2 nuclei I
is immersed in a large static magnetic field B0 along the z axis so that their Larmor
frequency is given by CO~ = yI B0 where yI is the magnetogyric ratio. The spins
develop an equilibrium magnetic polarization descrited by the reduced high tem-
perature density operator (161

P(O) = 1: > (3

where we have omitted, as usua1, the unity operator and all proportionality con-
stants.

The spins are irradiated at a frequency o.I~~ near COG with a circularly polarized
radio-frequency (rf) field of magnitude Bl such that yI Bl = toI. The evolving
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Figure 2. Rotating (detector) frame pictures of spins irradiated at frequency CI++ near reson-
ance (uJ with a circularly polarized radio-frequency field of magnitude BI = o.IJ~~. A
phase sensitive detector at frequency COALS is responsible for recording the transverse
magnetization. (b) shows that in the detector frame we have implemented, for high
field N.M.R., a situation equivalent to the laboratory picture (o.J~~~ = 0) of’ figure 1 for
simple conical circuits.
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magnetization is detected with a phase sensitive detector operating at frequency UJ+_~
such that

We consider the case of simple conical circuits for which a0 and a1 are constant
in time. In figure 2(a) mrf has been set equal to a&* so that 6 = 0, whereas figure
2(b) reflects the general situation in which 8 # 0. The frequency m&.. can be thought
of as the reference or zero of the frequency scale. A laboratory frame experiment of
the type in figure 1 with a constant field 16 1 = md/yI (here ad denotes the dynamical
frequency) moving with constant 6’ at frequency 6 around z would correspond to
a&.t = 0 in Figure 2 (b).

In a frame of reference rotating with the detector [17], we term this the ‘ detector
frame ‘, the effective static field along the z axis is B. - w&,/y1 so the effective
Larmor frequency is A, given by equation (4), and the effective rotation frequency of
the rf field B1 is 6, given by equation (5). The situation in figure 2@) is thus
equivalent to a magnetic field of magnitude B = tid/yl moving in a co:ne of angle 26
around the z axis at frequency 6. The effective hamiltonian in the detector frame is
given by

where

$(l) = -k+[cos oIZ + sin 6(lX cos & + I,, sin dt,)],

0 = tan-r (ml/A), (8)

and IX are the spin angular momentum operators. But this is precisely the arrange-
ment corresponding to figure 1 for the case of constant 1 B 1 and 0. Thus figure 2 @)
is the high field detector frame equivalent of conical circuits in the laboratory. To
implement the general circuits of figure 1 in the rotating frame ad and 6 can be
varied by modulating ao, qf and til.

To calculate the evolution of the magnetization in the detector frame of
figure 2@) it is convenient to transform temporarily to a frame rotating at frequency
6 with respect to the detector frame [17] as shown in figure 2(c); we imagine
moving the detector frequency to mrf. In the laboratory case m&t = 0, this corre-
sponds to a frame rotating at frequency 6 around the laboratory z axis. In this
rotating frame the total effective magnetic field is static with a magnitude me/y1
where the effective frequency Us is given by

toe = ((A - ~5)~ + CJ#‘*. (9)

The adiabatic limit corresponds to

in which case the quantization axis remains along the direction of md to first order
and the magnetization precesses at frequency Us given by expanding equation (9) in
d/ad and using equations (7) and (8) to giVe



Berry’s phase in magnetic resonance 1331
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Figure 3. Expansion of figure 2(c) showing a view of the effective static fields in a frame
rotating at frequency 6 with respect to the Berry situation in figures 1 and 2(b). The
adiabatic limit corresponds to taking the projection of 6 onto o.J~.

Details of the relevant geometry and the adiabatic projection of 6 onto md are
shown in figure 3.

The phase 4’ accumulated after one adiabatic circuit, Xf = 275 in the rotating
frame of figure 2 (c) is given according to equation (11) by

(12)

which corresponds in the original detector frame of figure 2@) to an accumulated
phase C#I of

4 = $ + 27C = $‘j + & = tid T + 27r(1 - cos #), (13)

with 4d and #g corresponding to the dynamical and geometrical phases of equations
(1) and (2) with Am = 1. Thus it is possible to determine Berry’s geometrical phase,
corresponding to ‘stroboscopic’  observations (once per circuit), by measuring tie
and 6.

The exact expression for the evolving density operator in the detector frame,
beginning with initial condition equation (3), is given by the well-known transient
solution to the Bloch equations [ 171 neglecting relaxation:

p(t) = sin 0IJcos 0(1 - cos Us t) cos & + sin Us t sin &]

+ sin @IJcos 0(1 - cos cOe t) sin dt - sin Us r cos &J

+ Iz[COs2 6 Z sin2 0 cos ae l], 04)

from which the adiabatic and non-adiabatic regimes can be inferred. Experimentally
a linearly polarized rf field was used, invoking the rotating wave approximation.
The phase sensitive detector measures (IX), (IJ and, upon Fourier transformation
of the signal, CII~ can be determined, Experiments were performed on the proton
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Figure 4. Fourier transform spectra of the detected transverse magnetization signal in an
experiment of the type shown in figure 2@) with B = 62.1’, ~J27r = 1.31 kHz,
a/271 = -0.33 kHz. Adiabatic and exact simuiations are shown as well as the
complex experimental signal. Deviations from adiabatic behaviour are visible since
8g0*25c&.

2
<
e
+ h
alcv

3

3.0

2.0

1.0

0.0

3.0

20

10

0.0

I I , 1 1 I I 1 I 1 I

_ (a)fl=6210

tl I I , I I , I , 1 l-j
-10 00 1.0

xacr
-I

-10 00 10
. .

Figure 5. Experimental measurements of CB~ + 6 versus 6 for two values of 0. According to
equation (15), in the adiabatic regime (8 4 ad) the data should conform to CLIP + d z
a‘, + &I - cos @, which is shown as the straight lines. The adiabatic behaviour holds
quite well for 6 < 0.2 ad.
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l Experimental
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Solid angle (9 = 2~ (1 - cos0))
Figure 6. Plot of experimental geometrical phase (extra rotation angle of the magnetization

per circuit) extracted from least squares linear fits to the adiabatic (6 c 0.20.1.J data of
figure 5 versus soiid angle. The straight line with slope 1 corresponds to Berry’s geo-
metrical phase.

spins of a water/acetone sample in a superconducting magnet with m0/2n =
500 MHz, a1/27r = 1.16 kHz and various values of 0 and 6. An example of the
Fourier transform of the detector signal is shown in figure 4 together with exact and
adiabatic simulations for 0 = 62. lo, c0J2~ = 1.31 kHz and 6/27r = -0.33 kHz. In
figure 5 we plot Us + 6, as determined from spectra such as the one shown in
figure 4, as a function of 6 for two values of 0, using calibrated oscillators to vary 6.
According to equation (1 l), in the adiabatic limit this should be given by

c0~+~~0&+~(l-cose). (19

Indeed, for small values of 6 the data are linear, and the geometrical phase 4g is
determined by the slope of the adiabatic straight line in figure 5 multiplied by
T = 27r/d and is plotted versus the solid angle 27r(l - cos 0) in figure 6. The behav-
iour is similar to that observed in the optical rotation [7] and N.Q.R. [8] experi-
ments.

In these experiments the geometrical phase is present as a small factor in the
presence of the large dynamical phase. The effects of the dynamical phase may be
removed either by stroboscopic observation commensurate with the dynamical
period, or by periodically (for example once in the middle of the circuit, or just prior
to repeating the circuit) reversing the direction of B. In the latter case the dynamical
phase is refocused as an echo [ 17 (b)] at the end of the circuit leaving only the pure
geometrical phase.

The cos 6 factor which derived from the projection of the small vector 6 onto the
large ad is familiar in N.M.R. [SJ. It corresponds to the secular approximation or
average hamiltonian [ll, 121. What we have done in going from the laboratory or
detector frame to the rotating frame is to transform a large slowly time varying
hamiltonian into a large time independent hamiltonian plus a small additional term
which is treated by perturbation theory. This is explained in more detail in the next
section. We have used a time independent perturbation aIZ as the generator of the
adiabatic circuit whereas Cina [4] used a time dependent generator orthogonal to
the field md at all times to express the problem as one of parallel transport [2].
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The scaling of chemical shifts by cos 0, for example l/J3 at the ‘magic angle’
[18], is related to the frequency differences predicted by Wilczek and co-workers [3]
and observed in this work. Dipolar couplings between spins and other higher rank
interactions are correspondingly scaled by higher order Legendre polynomials as
predicted by the coherent averaging theory of Haeberlen and Waugh [12]. The
treatment and experiments in this paper are of course applicable to spins greater
than 1/2 or to any multilevel quantum system which can be cast in the framework of
a fictitious spin [5, 191. Finally, we note that the effects measured in this work can
be interpreted classically and are equivalent to the accumulation of phase due to
Coriolis forces in accelerated frames of reference [20]. They would occur for an
inclined top spinning on a slowing rotating platform. Quantum mechanical effects
due to non-integral m values of the spin could be observed in adiabatic versions of
the N.M.R. interference experiments [6].

3. General circuits and coherent averaging
In this section we discuss the relationship between the adiabatic theorem and

well-known coherent averaging effects in N.M.R. Consider a ‘large’ hamiltonian
s(t) with a slow time dependence characterized by a small parameter 8. We assume
that 2(t) is cyclic and that it goes through one cycle or circuit:

L%(T) = S(O). (16)

Such cyclic hamiltonians are familiar in pulsed N.M.R. When the time depen-
dence is rapid then coherent averaging theory [12] is directly applicable, but here
we are interested in adiabatic processes for which a change of picture may be
appropriate. An eigenstate 10) of $(O) will evolve by the end of the circuit to

I n = WI I Oh u3

where the circuit propagator o(T) is given by

s T

D(T) = F exp ( - i/h) c%(t) dt (W
0

and Y is a time ordering operator [21]. If the change is adiabatic then

I n = exp G(% + Y(C))1 10) (19)

where yd and y(C) are the dynamical and geometrical phases [2] respectively. Taking
only the dynamical phase yd is tantamount to assuming that the eigenvalues of the
average hamiltonian L@ [12] are the same as the average eigenvalues of $(r),
namely (0 12 10) = (t 1 X(t) ] t). The circuit propagator o(T) in equation (18) can
be factored [22]

I7(7J = RJ(7JU(?-), (20)

where

U(T) = F exp (-i/h) ‘(Z(t) + ~?‘~(t)) dt, (22)
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and
X(t) = R&)c@(t)g(tJ* ~23)

The hamiltonian X&t) in equation (21) can be regarded as the generator of an
interaction picture [l] in which the effective hamiltonian is g(t) + ifa and the
effective circuit propagator is U(T) in equation (22). In such an interaction picture

&P-) I 7’) = UT IO (24)

Now, the objective is to find a ‘small’ X6(t) and thus an R6(t) such that Z’(t) in
equation (23) is time independent or commutes with itself at different times. If X(t)

is time independent (this is easily generalized to a commuting hamiltonian), namely

Z(t) = A$ (25)

where Xd is a large ‘local’ hamiltonian giving rise to normal dynamical evolution
of the eigenstates with a characteristic frequency

(.Bd = 27&, (26)

then equation (22) can be written

U(T) = F exp (-i/h)
s

‘(Sfd + X8(t) dt). (27)
0

Of course the choices of R6 and Hd are not unique and it is the different pictures
and local hamiltonians which give rise to the choice of dynamical phases and
fractional quantum numbers. Now, since X6 is small, 11 %‘a 11 4 11 Xd 11, we use
coherent averaging theory [12], retaining only the zero order average hamiltonian
s@‘& in the Magnus expansion [23], that is the part of X’&(t) which is secular or
commutes with G+‘~. This is given by

1

T

H

id

td 0
exp (( - i/h)tAf&f&t’) exp ((i/h)tSd) dt dt’. (28

a

2d is a generalization of the vector projection proportional to -6 cos 0 of the
previous section where the hamiltonians Zd and L%‘~ correspond to magnetic field
vectors. Corrections to L@~ which correspond to non-adiabatic deviations are pro-
vided by the correction terms %‘&k) [l2, 231.

The adiabatic circuit propagator o(T) in equation (20) is thus given by combin-
ing equations (20), (2i), (27) and (28):

o(T) = R&T)&(7’) exp (( - i/!z)TZ’,J, (29)

where

&(T) = exp (( - i/fi)TS&. (30)

The dynamical and geometrical phase factors in equation (19) can now be recog-
nized as

exp (( - VWQG) I 0) = =p hl I 0 We

%V%Vl I W = exp @WI IO)- WI

l%mkl transport corresponds to a choice of Ha(t) orthogonal to Xd so that
J+ 0 and &(7J = 1. The geometrical phase is then given entirely by RJ(?‘) in
equation (32) acting on IO). This relates the adiabatic behaviour to the general case
of parallel transported circuits due to Aharonov and Anandan [24].
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(a) Dipole-dipole coupling Quadrupolar coupl ing
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Figure 7. Adiabatic rotation of a sample can generate a geometrical phase for (LZ) dipole-
coupled spins or (b) spins I = 1 subject to electric quadrupole coupling.

Equation (29) makes clear the contributions to the phase factor in a circuit. The
dynamical phase of equation (31) derives from the static hamiltonian &?d which
corresponds in the magnetic field case to a static magnetic field or CJJ~ in figure 2.
Any mystery in the geometrical phase is a consequence of the seductive intuition
that in the transformed picture, or local coordinates, the evolution, boundary condi-
tions and quantization should be the same as if Zd were originally static. The terms
&(7J and RJ( T) in equation (32) give rise respectively in the magnetic field case to
the - 27c cos 0 term of equation (12) and the 2~ term of equation (13). The case
0 = 0 in 5 2 corresponds here to Ri( T)&( 7J = 1 which can be achieved for example
(not necessarily) if

(33)

In this case equation (27) can be factored exactly and the adiabatic approx-
imation is not necessary. The magnetic case 0 = 742 corresponds to &(T) = 1 in
which case R:(T) is responsible for the geometrical phase and gives rise to the
familiar spinor sign changes under 27r rotations [2, 61. Such considerations also
apply to the case of molecules with coupled rotors [9].

Interesting versions of the geometrical phase occur for coupled spins or for spins
greater than $. Suppose two spins I and 2 are coupled by magnetic dipolar inter-
actions in the absence of a static external field. In the principal axis system (x’, y’, z’)
of the dipolar tensor, the coupling hamiltonian is

(341

Similarly, for a spin I = 1 in the principal axis system of the electric field gradient
tensor

&j = $4j[(315 - 12) + Y@;* - Q]. (35)
In the case of axial symmetry (q = 0). a component of magnetization perpendicular
to the symmetry (z’) axis oscillates linearly at the dynamical frequency CB~ [15] so
the total magnetization evolves in a plane, the polarization plane. A superposition
of the m = & 1 eigenstates, corresponding to double quantum coherence, would
remain constant in time [SJ. Imagine that the symmetry axis (z’) is now rotated
adiabatically in a cone at frequency ~5, for example by physically rotating a solid
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Static Adiabatic

m = O A

A
I

Figure 8. The degeneracy of the m = & 1 levels is lifted by sample rotation.

sample around an axis tilted at an angle 0 with respect to z’, as shown in figure 7.
The evoIution  of the spin system can then be described in a frame rotating at 6 with
the crystal or spin pair by a time independent hamiltonian (equation (34) or (35)) with
an additional terrn Fzfi[cos O(llZ, + lZZ,) + sin 6(11XP + lZX,)] or FG[cos 01Z9 + sin OIX,].
The term L$‘~ of equation (28) is given by the projection of this term onto the
symmetry axis, i.e. @ cos O(IIZ, + IZZ,) for the dipolar case, and fi6 cos OIZ, for
the quadrupolar case (see figure 8), again violating the intuitive notion that if we
‘run around’ with the pair of spins then the local dynamics should look the same as
they would for a static pair in the laboratory. This is identical to the consideration
of 9 2 and so the phase at the end of the circuit is given precisely by equation (13).
Thus the polarization plane of the magnetization is now rotated by the geometrical
phase and the orientation of the & 1 superposition by twice the geometrical phase
when the crystal is rotated adiabatically. This is analogous to the rotation of the
optical polarization plane in the experiments of Chiao and co-workers [7] and will
give rise to effective Zeeman splittings in the N.M.R. experiments or powder pat-
terns in the zero field spectra [ 151. Similar considerations hold for a spin-l with an
axially symmetric electric quadrupole coupling or for spin-3/2 [8]. If the coupling
for spin-l is not axially symmetric q # 0, and 6 4 ~a~, then we find $‘a = 0 and the
geometrical phase is 2xm. This corresponds to the situation in which the effective
rotation in parameter space occurs in a plane containing the degeneracy.

If the dipolar coupled spin pair described by equation (34) is in the presence of a
large magnetic field it is known that the dynamical phase due to the secular dipolar
coupling X’i can be eliminated by rotating the sample adiabatically in circuits
around an axis inclined at the magic angle (em = cos- r (l/d3)) relative to the mag-
netic field [18]. Dynamical phases due to quadrupolar couplings and anisotropic
chemical shifts are similarly removed. Since 2; commutes with itself at different
times, the geometrical phase is also zero so that only isotropic Zeeman couplings or
chemical shifts remain. Instead of moving the sample relative to the field, similar
effects can be achieved by rotating the field in a-cone of angle 2em with the sample
fixed c25-J In this latter case, however, there will be frequency shifts due to the
geometricaI phase factors given by equation (2). These will add to the isotropic shifts
of the magic angle spectra

I+=lIy, by combining dipolar or quadrupolar couplings together with magnetic
fieIds, for exampIe spin I = 1 with

&= $u&[(31;, - Z2) + 3ZJ, (36)
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where, again, the z’ axis is moved in a circuit, the non-abelian case of Wilczek and
Zee [3] can be investigated [26]. In fact, such a possibility also exists for the 4 4
manifold of the spin - 2 N.Q.R. [8], but, for the case of conical circuits, could be
treated by Tycko as adiabatic Berry phases on diagonal states.

4. Conclusions

When two systems are coupled together, the eigenstates of the total hamiltonian
do not in general exhibit statistical independence in the separate systems, That is,
the probability amplitudes are not the product of probability amplitudes for each
system. Often the states may be exactly, or approximately, separated into states
which are functions of variables involving both systems. It is often the case that one
or more of the degrees of freedom describing one of the systems goes through a
sequence of values, for example, an angle. Although the overall wave function must
be single valued when the hamiltonian repeats itself, there is no reason for the
individual amplitudes which make up the products above to be single valued. This
partial multivaluedness was pointed out and analysed in the early treatments of the
coupling of internal rotations to overall rotations [9] showing that fractional
quantum numbers were a natural consequence of multivaluedness.

An extreme example of strong coupling is the Born-Oppenheimer approx-
imation. In the electronic wave functions, the nuclear coordinates are parameters.
An overall wave function is the product of the electronic wave function times the
nuclear wave function. Again there is no a priori reason for the electronic wave
function and the nuclear wave function to be separately single valued in the nuclear
coordinates. Herzberg and Longuet-Higgins [lo] pointed out that near a conical
intersection of a triatomic molecule the electronic wave function would be multi-
valued. Thus fractional quantum numbers could be expected in certain vibration
states of triatomic species such as (Na)3, and indeed appear to have been observed
[27]. In the later 1970s and early 198Os, Mead and Truhlar [ll] pointed out that
the partial multivaluedness could be removed by multiplying both nuclear and
electronic amplitudes by a phase which countered the multivalued real amplitudes.
Thus, in the nuclear Schrodinger equation one restored single-valuedness at the cost
of introducing a ‘vector potential’. Mead and Truhlar dubbed this construct the
molecular ‘ Bohm-Aharonov’ [28] effect and proceeded to relate the form of the
vector potential to certain circulation integrals over the nuclear potential energies. A
related approach was discussed recently by Wilczek and co-workers [3].

The papers of Berry and Simon [2] are in essence a complete analysis of the
time dependent adiabatic theorem. When the adiabatic eigenstates are complex and
single valued, the diagonal phase factors, usually discarded [1], must be retained.
Not surprisingly, the amplitudes may be multivalued. Also not surprisingly, the
phase is identical to that derived by Mead and Truhlar. In fact, the additional phase
required to restore the single valuedness of the eigenstates is the geometrical phase
of Berry. Thus there may be observable effects in the dynamics. In particular, Berry
suggested a series of experiments including one involving the polarization of light
and the one investigated in the present paper involving adiabatic rotation of the
spatial degrees of freedom of a magnetic system.

Although Berry used quantum mechanical arguments to obtain his phase, it is
clear that the dynamical manifestation of this phase is classical in nature since the
magnetization or the polarization of any fictitious spin satisfies the Bloch equations
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[l7], and, in fact, Cina [4] obtained the Berry phase from classical arguments, Thus
for spins and other systems which undergo rotation, Berry’s effect is entirely analo-
gous to evolution under Coriolis forces in an accelerating non-planar reference
frame [NJ. Since the polarization of light may be described in terms of the Stokes
parameters, the experiments of Chiao and co-workers [7] is another manifestation
of this idea

In this paper we have related the effects for spin-l/2 to well-known behaviour in
N.MR involving continuous irradiation of spins near resonance. The experiments
were carried out for conical circuits over a range of parameters which include both
adiabatic and non-adiabatic effects. In addition we have invoked the known solu-
tions to the Bloch equations for the evolution of magnetization with arbitrary
values of the parameters, and hence were able to compare the exact results both
with the experiment and with the general adiabatic theory. Finally, the relationship
between geometrical phase in general adiabatic circuits and the average hamiltonian
in an interaction picture was outlined. Such an approach to adiabatic N.M.R.
experiments is useful because it lends to the processes a deeply geometrical view
[2] in the spirit of the topological arguments of Berry and Simon.
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This work was supported by the Director, Office of Energy Research, Office of Basic
Energy Sciences, Materials Sciences Division
under Contract No. DE-ACO3-76SFOOO98.

References
Messiah, A., 1962, Quantum Mechunics (North

Mechunics (McGraw-Hill).

of the U.S. Department of Energy

Holland). SCHIFF, L. I., 1968. Quuntum

BERRY, M. V., 1984, PYOC. R. Sot. Lond. A, 392,45. BERRY, M. V., 1985, J. Phys. A, 18,
15. SIMON, B., 1983, Phys. Rev. Lett., 51, 2167.

MOODY, J., SHAPERE, A., and WILCZEK, F., 1986, Phys. Reu. Lett., 56, 893. WILCZEK, F.,
and ZEE, A., 1984, Phys. Rev. Lett., 52, 2111.

GINA, J. A., 1986, Chem. Phys. Lett., 132, 393.
PIN=, A., 1987, Lectures on Puked NMR (Proceedings of the 100th Fermi School on

Physics), edited by B. Maravigha (North Holland), LBL Preprint No. 22316.
STOLL, M. E., VEGA, A. G., and VAUGHAN, R. W., 1977, Phys. Rev. A, 16, 1521.

S~XER, D., PINES, A., and MEHRING, M., 1986, Phys. Reu. Lett., 57, 242.
CH~AO, R. Y., and Wu, Y.-S., 1986, Phys. Rev. Lett., 57, 933. TOMITA, A., and CHIAO,

R. Y., 1986, Phys. Rev. Lett., 57, 937.
TYCKO, R., 1987, Phys. Reu. Lett. (in the press).
Nnxso~, H. H., 1932, Phys. Rev,, 40, 445. M ILLER, W. H., and PIN, A. (to be

published).
HERZBERG, G., and LONG~T-HIGGINS, H. C., 1963, Disczas. Furuduy Sot., 35,77.
MEAD, C. A., and TRUHLAR, D. G., 1979, J. them. Phys., 70,2284  and references therein.
(a) HAEBERLEN, U., and WAUGH, J. S., 1968, Phys. Rev., 175,453. (b) MEHRING, M., 1983,

High Resolution NMR in Solids (Springer).
CHO, H. M., TYCKO, R., Pm, A., and GUCKENHEIMER, J., 1986, Phys. Reu. Lett., 56,

1905.
Dti, T. P., and HAM, E. L. 1958, Solid Stute Physics, Suppl. I (Academic).
THA~ER, A. M., and Pm, A., 1987, Accts them. Res., 20, 47. ZAX, D. B., BIELECKI, A.,

ZILM, K. W., Pm, A., and WEITEKAMP, D. P., 1985, J. them. Phys., 83,4877.



1340 D. Suter et ul.

[16] GO L D M A N, M., 1970, Spin Temperature and Nuclear Magneti; Resonance in Solids
(Oxford).

[17] (a) BLOCH, F., 1946, P~JK Rev., 70, 460. (b) HAHN, E. L., 1950, f’hys. Rev., SO, 580. (c)
RABI, I. I., RAMSAY, N. F., and SCH~INGER, J., 1954, Rev. mod. Phys., 26, 167.

[18] (a) LEE, M., and GOLDBERG, W. I., 1965, Phys. Reu. A, 140, 1261. (b) ANDREW, E. R.,
BRADBIJRY, A., and EAD~, R. G., 1958, Nature, Lond., 182, 1659. (c) Lam, I. J., 1959,
Phys. Rev. Lett., 2, 285. (d) MARICQ, M. M., and WAUGH, J. S., 1979, J. them. Whys., 70,
3300.

[ 191 (a) FEYNMAN, R. P., VERNON, F. L., and HELLWARTH, R. W., 1957, J. appl. Phys., 28,49.
(b) ABRAGAM, A., 1961, The Principles of Nuclear Magnetism (Oxford University
Press).

[20] GOLDSTEIN, H., 1980, Classical Mechanics (Addison-Wesley). HANNAY, J. H., 1985, J.
Phys. A, 18,221.

[21] DYSON, F. J., 1949, Phys. Rev., 75,486.
[22] WILCOX, R. M., 1967, J. Math. Phys., 8, 962. JEE~R, J., and HENIN, F., 1986, Phys. Rev.

A, 34,4897.
[23] MAGNUS, W., 1954, Commun. pure appl. Math., 7, 649.
[24] ~ARONOV, Y., and ANA~AN, J., 1987, Phys. Rev. Lett. (in the press). BOUC~AT, C.

(private communication).
[25] LEE, C., SUTER, D., and PINS, A., 1987, J. magn. Reson., 74 (in the press).
[26] SUTER, D., and PINES, A., 1987 (to be published). VEGA, S., and PIG, A., 1977, J. them.

Phys., 66, 5624.
[27] DELACR~TAZ, G., GR A N T, E. R., WHETTEN, R. L., WASTE, L., and ZW A N Z I G E R, J. W.,

1986, Phys. Rev. Lett., 56, 2598.
[28] AHARONOV, Y., and BOHM, D., 1959, Phys. Rev., 115,485.


