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Study of the Aharonov-Anandan Quantum Phase by NMR Interferometry
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Aharonov and Anandan have recently reformulated and generalized Berry’s phase by showing that a
quantum system which evolves through a circuit C in projective Hilbert space acquires a geometrical
phase p(C) related to the topology of the space and the geometry of the circuit. We present NMR in-
terferometry experiments in a three-level system which demonstrate the Aharonov-Anandan phase and
its topological invariance for different circuits.

PACS numbers: 03.65.Bz, 42.10.Jd, 76.60.-k

It was shown by Berry’ that a nondegenerate quantum
state 1 I& 1) of a Hamiltonian %(t) which varies adia-
batically through a circuit C in parameter space ac-
quires, in addition to the “normal” dynamical phase

(the generalization of &I, a phase which is related to
the geometry of the circuit. Simon2 explained that this
geometrical phase could be viewed as a consequence of
parallel transport in a curved space appropriate to the
quantum system. Much experimental and theoretical
work on “Berry’s phase” 3 and its connection to the early
work of Aharonov and Bohm, and Mead and Truhlar,4

has since appeared. Recently, three important generali-
zations of this phase have appeared. In the first, Wilczek
and Zee5 removed the constraint of nondegenerate states
and related the evolution and phases of a degenerate
manifold to a non-Abelian gauge. In the second, Berry,
as well as Jackiw and co-workers, removed the constraint
of adiabaticity in the Hamiltonian circuit6 and developed
asymptotic expansions for the evolving (noncyclic) states
and phases.

The third generalization, a fundamental one, which
forms the subject of NMR experiments in this Letter
and optical experiments in the accompanying Letters by
Chiao and co-workers and Bhandari and Samuel,7 is due
to Aharonov and Anandan.8 They cast the problem in
terms of circuits of the quantum system itself, rather
than circuits of the Hamiltonian in parameter space. It
is clear from recent work that this is, in some sense, a
continuous version of the phase discovered by Pancharat-
nam more than 30 years ago.9 A simple formulation of
the Aharonov-Anandan (AA) phase is as follows: If the
density operator 1 yd(y 1 for a pure state (generalized to
mixed states by superposition) undergoes a cyclic evolu-
tion through a circuit C in projective Hilbert (density
operator) space 1 ydtyrl- c 1 I,uX~I, then the quantum
state 1 a,~) acquires a geometrical phase p(C) related to
the (a)1 holonomy2 associated with parallel transport
around the circuit. This phase appears in addition to the
dynamical phase yd given by (1), where ‘%(t) may be

noncyclic and nonadiabatic. 8 Thus, we can write

The importance of the AA formulation is that it ap-
plies whether or not the Hamiltonian %(l) is cyclic or
adiabatic- the geometrical phase depends only on the
cyclic evolution of the system itself. This establishes a
simple connection of the geometrical phase to the
Aharonov-Bohm effect4 which does not invoke adiabati-
city of the circuit. The Berry phase thereby emerges as a
manifestation of the AA geometry in the case of adiabat-
ic evolution. Bouchiat and Gibbons” have presented a
thorough theoretical analysis of the AA phase for a
three-level spin-l system.

As a demonstration of the AA phase, consider the sit-
uation depicted in Fig. 1, a version of NMR inter-
ferometry related to neutron (say) interferometry. 11

The two-level system (TLS) comprising states 2 and 3
can be treated as a fictitious spin-i system.12 Time-
dependent magnetic fields are applied to take the TLS
through a circuit. The resultant phase factor associated
with state 2 is detected by means of its effect on transi-
tion 1-2. Suppose the system begins in thermal equilibri-
um so that the initial density operator for the three-level
system is diagonal in the eigenbase of the unperturbed
Hamiltonian. The ¹ / 2  pulse applied to the 1-2 transition

FIG. 1. Schematic representation of the NMR inter-
ferometry experiment to demonstrate the Anaronov-Anandan
(AA) phase. The 2-3 two-level system (TLS) undergoes a cir-
cuit C in projective Hilbert space and the phase is determined
by means of its effect on the echo produced by the coherent su-
perposition of levels 1 and 2.
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produces a coherent superposition of the two states
whose phase serves as the reference for the subsequent
measurement of the geometrical phase. The ¹  pulse re-
focusses the 1-2 superposition as an echo13 of transverse
magnetization. This 1-2 echo corresponds to the element
prz of the density matrix,

(31

and can be observed by means of a phase-sensitive detec-
tor at frequency ~012. The submatrix p2s3 is proportional
to 1 -/-P~-~. 0, the projected density matrix for the 2-3
TLS, where p2m3 is the TLS polarization vector (initially
along z) and d is the vector (ox, oy,crZ 1 of Pauli ma-
trices. Imagine now that p2w3 is made to undergo a cir-
cuit, that is p2m3- cp2e3 (and therefore p2e3+ cp2m3),
by means of a perturbation applied selectively to the 2-3
transition. The phase factor acquired by the quantum
states does not affect p2m3 and is therefore unobservable
in the TLS.” However, the phase factor acquired by
state 2 does manifest itself in the phase of the 1-2 echo
in the element ~12 (~12- cexp~~~~~+~(C)l~& and is
therefore detected by the phase-sensitive detector at fre-
quency D 12.

For the fictitious spin- i TLS, projective Hilbert space
corresponds to a two-sphere and the geometrical phase
becomes

p(c) =%z~(C) = * + rk(c), (4)

where m is the magnetic quantum number and a(C) is
the solid angle subtended by the circuit C at the origin.
We add that the n pulse and the echo in the 1-2 transi-
tion are not necessary in principle since the phases could
be detected in the coherent signal following the ~12
pulse. In practice, however, the echo is a convenient ex-
perimental means of compensating for any extraneous
dephasing due to nonuniform magnetic fields and other
inhomogeneous broadening mechanisms. We also men-
tion that p2-3 need not begin and end along Z; it is neces-

Cone Triangle Slice

FIG. 2. Three types of circuits experienced by the polariza-
tion p (pzm3 in the text) for the TLS of Fig. 1 in the 2-3 frame
of reference. The solid angles are a(C) =2~(1 -cost)) for the
cone, 0 (C) = 0 for the triangle, and a (C’) -20 for the slice.

sary only that it go through a circuit.
Experiments were performed on the spin-l manifold of

two proton spins- 4 coupled by magnetic dipolar interac-
tions in the molecule CHzCl2 oriented in a nematic
liquid-crystal solvent. r4 The static magnetic field was
8.4 T and the rotating magnetic fields at frequencies
1~12~362.023524 MHz and ~23~362.019675 MHz had
amplitudes of 1.7 and 1.3 pT, respectively. The system
was allowed to reach thermal equilibrium in the magnet
and three types of circuits with a range of solid angles
n (Cl were implemented for the TLS as shown in Fig. 2,
by the application of time-dependent phase-shifted mag-
netic fields near ~23. l5 The cone circuits were induced
by a magnetic field which was, in the rotating frame, tilt-
ed at an angle 0 with respect to the z axis. For the
spherical triangles and the slices, rectangular magnetic
field pulses were applied perpendicular to the polariza-
tion vector. For the spherical triangles the pulses were a
~/2 pulse along (O,l,O), a 0 pulse along (O,O,l), and
finally a ~r/2 pulse along (sin& -cos&O). Similarly, the
slices were generated with a K pulse along (O,l,O) fol-
lowed by another n pulse along (sin& -cosG,O). The
geometrical phase was determined by measurement of
the phase relative to a reference phase (yd), determined
by pure dynamical evolution. For the spherical triangles

x-Channel y-Channel

FIG. 3. Oscilloscope traces of the 1-2 echoes detected in the
two orthogonal (x,~) channels of a phase-sensitive detector at
frequency titr. In this case, the 2-3 TLS undergoes the slice
circuits of Fig. 2, with solid angles a(C) equal to 0, ~/2, Z,
and 2~.
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FIG. 4. Summary of experimentally determined geometrical
phase /3(C) as a function of solid angle a(C) for the three
types of circuits in Fig. 2. The solid line corresponds to the
theoretical (AA) phase.

and the slice circuits the dynamical phase vanished, since
in our experiment the applied field was always orthogo-
nal to p2-3, generating parallel transport. For the cone,
the dynamical phase was determined via a reference ex-
periment that included only the component of the field
parallel to p2e3.

Figure 3 shows some examples of the echoes observed,
exhibiting the phase shifts induced by evolution around
the slice circuits of Fig. 2, with various solid angles. The
geometrical phase is given by p(C) ==arctan@/&)
where SX and S,, are the integrated amplitudes of the
signals in the two detector channels. Figure 4 shows a
plot of p(C) versus solid angle for all three circuits of
Fig. 2. It is clear that the geometrical quantum phase is
proportional to the solid angle subtended by the circuit.
Our results illustrate the invariance of the AA phase to
details of the circuit geometry and to the (perhaps nona-
diabatic and noncyclic) Hamiltonian responsible for gen-
erating the circuit.
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