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Quantum state tomography is the procedure for reconstructing unknown quantum states from a series of
measurements of different observables. Depending on the physical system, different sets of observables
have been used for this procedure. In the case of spin qubits, the most common procedure is to measure the
transverse magnetization of the system as a function of time. Here, we present a different scheme that relies
on time-independent observables and therefore does not require measurements at different evolution times,
thereby greatly reducing the overall measurement time. To recover the full density matrix, we use a set of
unitary operations that transform the density operator elements into the directly measurable observable. We
demonstrate the performance of this scheme in the electron-nuclear spin system of the nitrogen vacancy
center in diamond.
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Introduction.—Finding the state of a quantum system is
one of themain tasks formany applications in basic quantum
physics [1] as well as in many emerging quantum tech-
nologies, such as in the field of quantum information [2,3].
Using quantum state tomography (QST), one can recon-
struct the quantum state represented by a density operator,
which contains the full information about the system [2,4,5].
Performing a full QST requires serial measurements of a
complete set of observables. The size of such a complete set
and therefore the number of individual measurements and
the measurement time all grow exponentially with the
number of qubits in the system.
While QST has been performed for many years [6,7], it

was often done in the form of time-dependent measure-
ments [8,9]. In spin-based systems such as nuclear mag-
netic resonance [3,10], it is often not possible or not
optimal to use projective measurements. Instead, the
established procedure relies on the measurement of free
induction decays (FIDs) [6,7], which may generate infor-
mation on multiple density operator elements in a single
scan [8,11,12]. This procedure has therefore been well
established in ensemble quantum information processing.
In the case of single spin qubits such as the nitrogen

vacancy (NV) center in diamond [13,14], this type of
measurement is also applicable [9,15], but the precessing
transverse magnetization that is detected in a conventional
FID experiment is not directly observable. Instead, the
transverse magnetization (coherence) has to be converted
into population of the electron spin and detected as a
change of the photoluminescence count rate; this is known
as the Ramsey-fringe method [14]. Since this type of
readout results in a large number of individual measure-
ments, the procedure becomes even more time-consuming.
Therefore, we propose here a different approach that is
significantly more efficient for this type of qubit:

eliminating the need for free evolution reduces the number
of actual measurements by several orders of magnitude,
with a corresponding reduction of the overall measure-
ment time.
In our scheme, the photon count rate is the immediate

observable; it is directly connected to populations of the
electron spin, which correspond to the diagonal elements or
their linear combination in the density matrix. Since such
populations do not change during free evolution, the
observable is not time-dependent. The other elements of
the density matrix can be transformed to the observable
through unitary transformations. With a suitable decom-
position of the density operator, every element in the basis
set can be converted into the observable and therefore be
read out by a single measurement. Overall, this procedure
provides a dramatic speedup by several orders of magni-
tudes, compared to the measurement of precessing magne-
tization. As an experimental demonstration, we implement
this procedure in the single NV center of diamond, which is
used inmany emerging applications of quantum information
and sensing technologies. [14,16–20].
Single-qubit state tomography.—We start with the QST

of single qubit [21–24]. We consider systems where the
measurement of diagonal density operator elements is easy,
such as in the NV centers of diamond where the popula-
tions can be determined by photon counting [14]. In the
case of single qubits, the relevant Hilbert space is spanned
by the computational basis fj0i; j1ig, which are the
eigenstates of the Pauli operator Z with eigenvalues �1.
The density matrix describing the quantum state can be
expanded in terms of the unit operator E and the Pauli
matrices (X, Y, and Z) as

ρ ¼ cEEþ cXX þ cYY þ cZZ; ð1Þ
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where cE ¼ 1=2 for a normalized density operator and the
other ci are the weights of the corresponding Pauli matrices.
The diagonal elements ρ11 and ρ22, which correspond to the
populations pj0i and pj1i of the states j0i and j1i, are related
to the coefficients cE and cZ as

cE ¼ 1=2¼ ðpj0i þpj1iÞ=2; cZ ¼ ðpj0i−pj1iÞ=2: ð2Þ

To measure the off-diagonal elements of the density
operator ρ, we apply operations X90 and Y90 to transform
them to diagonal elements. Here, Xα and Yα are rotations of
the qubit around the x− and y− axis by an angle α. They
transform cYY and cXX to cYZ and −cXZ, respectively.
Therefore, cX and cY can be measured directly in the
transformed states.
For the experimental demonstration, we used the elec-

tron spin of a single NV center in a diamond sample with
natural abundance (∼1.1%) of 13C. The experiments were
performed at room temperature. The static magnetic
field B was aligned along the symmetry axis of the NV
center. The relevant Hamiltonian of the electron spin is then
He=ð2πÞ ¼ DS2z − BγeSz. Here, Sz denotes the spin-1
operator for the electron, D the zero-field splitting, and
γe the gyromagnetic ratio [14]. Figure 1 shows the pulse
sequence, which always starts with the polarization of the
electron spin into the state mS ¼ 0, using a pulse of a
532 nm laser. The polarization is higher than 70% [21], and
in the present work we can approximate the pseudopure
state as a pure state j0i as discussed in the Supplemental
Material (SM, Sect. IC) [25].
The population of the state mS ¼ 0 can be measured by

the count rate r of the fluorescence detected during a
second laser pulse, since the state mS ¼ 0 fluoresces more
strongly than mS ¼ �1 [14,21,34,35]:

r ¼ rmin þ pj0iðrmax − rminÞ: ð3Þ

The maximum count rate rmax corresponds to the system
being in state mS ¼ 0, while the minimum count rate rmin
results when the system is in mS ¼ �1. The readout is
destructive, since the laser pumps the system back to the
state j0i. Therefore, the measurement time has to be kept
relatively short [14] to obtain a good measure of the

instantaneous population. To reduce the effects of drift
and laser power fluctuations, we always calibrate the count
rate against a measurement of rmax obtained after repump-
ing the system to the mS ¼ 0 state.
The single qubit is obtained from the electron spin states

mS ¼ 0 andmS ¼ −1, which we identify with the two logic
states j0i and j1i. For the 1-qubit case, the test state
preparation and the transformations for the QST were
implemented by single microwave (MW) pulses with a
Rabi frequency of 9 MHz. The measured count rate r then
allows us to determine the populations of the state as

pj0i ¼ ðr − rminÞ=δr; pj1i ¼ ðrmax − rÞ=δr; ð4Þ
where δr ≡ rmax − rmin. Writing rN , rX, and rY for the
count rates measured after the 3 operations NOOP (no
operation), X90 and Y90 we obtain the coefficients

cX ¼ ð1=2Þ − ðrY − rminÞ=δr
cY ¼ ðrX − rminÞ=δr − ð1=2Þ
cZ ¼ ðrN − rminÞ=δr − ð1=2Þ: ð5Þ

To test the QST procedure, we first prepared test states
j0i, j1i, jþi ¼ ðj0i þ j1iÞ= ffiffiffi

2
p

, and j−i ¼ ðj0i − ij1iÞ= ffiffiffi
2

p
by applying the operations NOOP, X180, Y90, and X90 to
state j0i, respectively. These states are eigenstates of the
Pauli matrices Z, X, and Y.
Figure 2 shows a graphical representation of the density

matrices, reconstructed from the measured coefficients,
whose values are given in the SM [25]. The top row shows
the real parts of the density matrices for states j0i, j1i, and
jþi. The bottom row shows the real and imaginary parts for
state j−i.
From the reconstructed density operators, we calculated

the fidelity [36]

F ¼ Trfρthρexpgffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TrfρthρthgTrfρexpρexpg

p ; ð6Þ

FIG. 1. Pulse sequence for state preparation followed by QST.
The nuclear spin polarization step is only used for the 2-qubit
system. Each green box represents a laser pulse, while the red
boxes represent sequences microwave (MW) pulses.
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FIG. 2. Experimental results of the tomography of a single
qubit. The top row shows the real parts of the measured density
matrices for states j0i, j1i, and jþi, as indicated in the panel. The
bottom row shows the real and imaginary parts for state j−i. The
error bars show the standard deviations obtained by repeating
the measurements.
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where ρth and ρexp are the theoretical and experimentally
reconstructed density operators. The resulting fidelities for
the input states j0i, j1i, jþi, and j−i are 0.994, 0.985,
0.995, and 0.986, respectively. The deviation between
experiment and theory can be mainly attributed to the
statistics of the photon detection and the control errors
(pulse imperfection) in implementing the state preparation
and tomography. Compared with the fidelity for state j0i,
the slightly lower fidelities for the other three states can be
used to estimate the process fidelity of the state preparation.
For a second example of 1-qubit QST, we identified the

qubit again with the same electronic spin statesmS ¼ 0 and
mS ¼ −1, but now conditional on the 14N nuclear spin
being in the mN ¼ 1 state. The experiments were per-
formed in a center in the 12C enriched (99.995%) diamond
sample [37–39]. We obtained a slightly higher fidelity than
the earlier experiments. The results are presented in the
SM [25].
State tomography for 2 qubits.—Moving to a 2-qubit

system, we use the basis states fj00i; j01i; j10i; j11ig and
we expand the density operator in a basis of products of
single qubit operators:

ρ ¼
X4

m;n¼1

cmnam ⊗ bn; ð7Þ

where am; bn ∈ fE;X; Y; Zg represent the unit operator E
and the Pauli matrices acting on one of the qubits. Since the
trace of a normalized density operator is unity, the
coefficient cEE ¼ 1=4 is fixed. The goal of the tomography
is to determine the other 15 coefficients cmn.
The primary observable for measuring populations is

again the photon count rate, which depends on the state of
the electron spin before the readout pulse is applied, but is
independent of the state of the nuclear spin. The measured
count rate is then, in analogy to Eq. (3),

r ¼ rmin þ ðpj00i þ pj01iÞðrmax − rminÞ: ð8Þ

Equation (4) also holds, with pj0i → pj00i þ pj01i and
pj1i ¼ pj10i þ pj11i. Therefore,

pj00i þ pj01i ¼ ðrN − rminÞ=δr ð9Þ

pj10i þ pj11i ¼ ðrmax − rNÞ=δr ð10Þ

and

cZE ¼ ðrN − rminÞ=ð2δrÞ − ð1=4Þ; ð11Þ

which corresponds to cZ in Eq. (5) in the single qubit QST.
To determine the remaining coefficients of the density

operator, we apply a set of unitary operations R to trans-
form the relevant operators cmnambn to cmnZE. The
coefficient cmn in the transformed density matrix can be

directly measured using Eq. (11), by replacing rN by rR,
where rR ¼ 2δr½cmn þ ð1=4Þ� þ rmin denotes the count
rate measured from the transformed density matrix.
Overall we can use 15 measurements to obtain the 15
coefficients, i.e., one measurement for each element of the
density operator.
To demonstrate the 2-qubit scheme, we used the electron

spin coupled to a single 13C nuclear spin, where the electron
spin in statesmS ¼ 0 andmS ¼ −1 was assigned as qubit 1
and 13C nuclear spin qubit 2. We used a 12C enriched
(99.995%) diamond to minimize decoherence due to addi-
tional 13C nuclear spins [39]. In this context, we focus on
the electron and 13C subsystem with the 14N in the state
mN ¼ þ1. The pulse sequence is shown in Fig. 1, with
more details given in the SM [25]. The required operations
can be efficiently generated by applying a small number of
MW pulses acting on the electron spin, combined with free
precession [40–45].
To prepare the pure state j00i, we first polarized the

electron spin, swapped the states of the two qubits and
repolarized the electron spin [42,43]. Additional details are
provided in the SM [25]. We implemented X90 ⊗ E,
Y90 ⊗ E, and X180 ⊗ E by single MW pulses. The other
required unitaries were implemented by pulse sequences
that were designed by optimal control theory [42,46].
These pulse sequences transfer the target operators to
ZE with fidelities of ≥ 0.99. The pulse sequences consist
of up to 3 MW pulses and the same number of free
precession periods and total durations up to 15 μs, which is
short compared to the transverse relaxation times T2 ¼
700 μs and T�

2 ¼ 40 μs of the electron spin. Additional
details are given in the SM [25].
As experimental demonstrations, we reconstruct the

density matrices of the following states: s1 ¼ j00i, s2 ¼
j0iðj0i þ j1iÞ= ffiffiffi

2
p

, s3 ¼ ðj00i þ j11iÞ= ffiffiffi
2

p
, and s4 ¼

ðj01i þ j10iÞ= ffiffiffi
2

p
. The states s2–s4 were generated by

applying sequences of MW pulses and delays to j00i.
Each sequence consists of three pulses and three delays.
The theoretical fidelity of the generated state is > 0.99.
The experimental results for the real parts of the

measured density matrices are illustrated in Fig. 3. The
rms values of imaginary parts in the experimental density
operator are 0.028, 0.033, 0.039, and 0.026, for the input
states s1–s4, respectively. We present the measured imagi-
nary parts of the density matrices in the SM [25].
The experimental fidelities for the states s1–s4, are 0.98,

0.97, 0.97, and 0.97, respectively. The main contributions
to the deviation from unity are (i) dephasing (0.05%),
(ii) the theoretical imperfections of the pulse sequences
(1%), (iii) experimental imperfections of the MW pulses
(1%), and (iv) photon counting statistics (2%). Additional
details are presented in the SM (Sect. VC) [25]. We are
currently optimizing the conversion sequences such that
they combine high fidelity for the unitary conversion
operation with suppression of dephasing [40,47].
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Discussion.—Our scheme can be straightforwardly gen-
eralized to the multiple qubit system. In a n qubit system,
the observable is ZE…E|fflffl{zfflffl}

n−1

, denoting a product operator with

Z for the electron spin qubit and E for the n − 1 nuclear
spin qubits. Equation (11) is generalized to

cZE…E|fflffl{zfflffl}
n−1

¼ ðrN − rminÞ=ð2n−1δrÞ − ð1=2nÞ: ð12Þ

In a similar way, all product operators can be transformed to
ZE…E|fflffl{zfflffl}

n−1

by unitary operations. Therefore, we need ð22n − 1Þ

measurements for reconstructing the full density operator.
More details are presented in the SM (Sect. VE) [25]. The
number of measurements required by the time-dependent
experiments (Ramsey) also increases proportionally to the
number of elements in the density operator. While the
precise number depends on the details of the coupling
network, additional couplings allow one to extract more
density matrix elements from a single FID measurement
and therefore reduce the number of FIDs that must be
measured [8]. On the other hand, they lead to increased
spectral crowding, which requires a larger number of points
per FID. As a result, the time saving of the time-indepen-
dent over the time-dependent approach does not depend on
the number of qubits. More details are shown in the SM
(Sect. VE) [25]. We therefore conclude that the time saving
of > 2 orders of magnitude should be similar for all
relevant quantum registers. However, full QST for systems
with > 3 qubits will probably remain impractical even with
this faster method.

Conclusion.—Quantum state tomography is an essential
tool for the analysis of quantum mechanical systems as it
allows one to extract all available information [1–3].
Accordingly, efficient procedures for QST are valuable
for a vast range of applications where information on
multiple density operator elements is accessed [48]. Early
QST experiments, e.g., in quantum optics [4,5], were based
on measurements in different bases to extract the coeffi-
cients of the density operator components. In the system that
we are considering, only a single observable is available. To
access different density operator components, we therefore
convert them into the available observable through a set of
unitary transformations. Early QST experiments by liquid-
state NMR [12] also used a single measurement basis, but
since the relevant measurement is not projective, it was
possible to continuously monitor the time evolution of the
density operator, which converts density operator compo-
nents that are not directly observable into the observable one
[6,49]. In the case of QST of single spins in solids, the
evolution of coherences cannot be observed directly; it was
therefore replaced by indirect detection using the Ramsey
method [49]. While this approach allowed one to transfer
the techniques developed for liquid-state NMR to the single-
spin systems, it generates a huge overhead, since a single
measurement is replaced by a sequence of typically several
hundredmeasurements with different evolution times. In the
method presented here, we remove this overhead, which
allows a speedup of the QST by several orders of magnitude
compared to the measurement of time-dependent observ-
ables for both the number of required measurements and the
overall measurement time (see SM, Sect. VD) [25]. Similar
to the existing procedures, the reconstruction of the density
operator can be improved by combing the measurement
results with statistical inference methods that result in a
density matrix that is close to the physical state [50–55].
Since QST is the main prerequisite for quantum process
tomography [56,57], our method is also very helpful for
speeding up this tomography. For our experimental dem-
onstration, we used a nitrogen vacancy center in diamond,
but the scheme should be equally applicable to other
physical systems, such as photons, atomic ensembles,
and trapped ions [5,58–60].
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