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The principle of superposition is an intriguing feature of quantum mechanics, which is regularly exploited in
many different circumstances. A recent work [M. Oszmaniec et al., Phys. Rev. Lett. 116, 110403 (2016)] shows
that the fundamentals of quantum mechanics restrict the process of superimposing two unknown pure states,
even though it is possible to superimpose two quantum states with partial prior knowledge. The prior knowledge
imposes geometrical constraints on the choice of input states. We discuss an experimentally feasible protocol
to superimpose multiple pure states of a d-dimensional quantum system and carry out an explicit experimental
realization for two single-qubit pure states with partial prior information on a two-qubit NMR quantum information
processor.
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I. INTRODUCTION

According to the postulates of quantum theory, it is gen-
erally possible to generate superpositions of arbitrary pairs
of pure states of a quantum system unless there exists a
superselection rule [1,2]. However, a recent study showed
that there exists no general quantum protocol for creating
superpositions of a completely unknown pair of pure quantum
states [3,4]. The difficulty of superimposing unknown quantum
states was first discussed in Ref. [3] in the context of quantum
adders. Quantum states that are equivalent up to a global phase
represent the same physical state. Therefore, the superposition
of unknown quantum states that are equivalent, up to their
global phases, may result in a relative phase between these
states, and thus in different states. However, some partial
prior knowledge about the states can be used to achieve the
restricted type of superposition, as suggested in a recent work
[4]. As shown in Ref. [4], two unknown quantum states |ψ1〉
and |ψ2〉 can be superposed if their overlaps with a reference
state |χ〉 are known and nonzero. For the superposition of
two d-dimensional states, a tripartite system of dimension 2d2

is used. The corresponding state is initialized into (a|0〉 +
b|1〉)|ψ1〉|ψ2〉, with arbitrary complex coefficients a, b. This
state is subsequently transformed by a three-party controlled-
SWAP gate. Finally, two projection operators are constructed
using the reference state |χ〉 and its overlaps (|〈χ |ψi〉|) with the
states to be superimposed. The application of these projectors
generates a state proportional to (aκ2|ψ1〉 + bκ1|ψ2〉), where
κi = 〈χ |ψi〉/|〈χ |ψi〉|.

In general, for the sake of quantum computation, it may be
useful to experimentally superpose unknown quantum states
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[5]. For the past few decades, there has been a growing interest
for more feasible, robust experimental quantum computation
models [6–9]. Experimental realization of superposition of
unknown quantum states is significant, not only as a quantum
computational task but also as a fundamental principle. There
exist experimental techniques based on photons [10], nuclear
spins [11], and superconducting qubits [12] that implemented
the superposition protocol discussed in [4]. In Ref. [10], the
superposition of two photonic states is realized. The controlled-
SWAP implementation was a challenge here; therefore, an
effective controlled-SWAP operation was implemented which
includes postselection and is a nonunitary operation. Another
work [11] presents the experimental implementation of the
superposition protocol [4] using three nuclear spins, where
the controlled-SWAP gate was implemented via numerically
optimized pulses. This was followed by a three-qubit tomog-
raphy and, subsequently, tracing out first and third qubits
numerically to imitate projective measurements. A transmons-
based implementation of Refs. [3,4] was realized on the
IBM Quantum Experience [12]. This scheme implemented
an optimal quantum circuit obtained using genetic algorithm
techniques, but its operation is limited to specific input
states.

The present work experimentally realizes a full proto-
col to perform the desired superpositions of pure states of
a quantum system, addressing all the aspects discussed in
Ref. [4]. The experiment-friendly superposition protocol dis-
cussed here overcomes the experimental inefficiencies reported
in Ref. [11]. Moreover, this is a two-qubit-based experimental
implementation to superpose two single-qubit states, contrary
to the existing implementation that used three physical qubits
[11]. The protocol is further generalized to superpose n

higher-dimensional quantum states. A detailed comparison
between our experimentally implemented protocol with that of
existing experimental implementations in terms of the success
probabilities is carried out. We also analyze the enhancement
in the success probabilities associated with the desired super-
positions for different prior information.
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The material in this paper is arranged as follows: theoretical
development of the experiment-friendly superposition protocol
is described in Sec. II. Further, experimental implementation
using a system of two nuclear spins is given in Sec. III. The
extension of our scheme to superpose n higher-dimensional
quantum states is discussed in Sec. IV. The comparison
of the success probabilities with respect to the previously
implemented superposition protocol [11] and its enhancement
subject to prior information are discussed in Sec. V. This is
followed by the concluding Sec. VI.

II. THEORETICAL SCHEME

Let us consider the superposition of two arbitrary states
|�1〉 and |�2〉, with desired weights of superposition (a and b)
and whose respective inner products 〈χ |�i〉 with a known
referential state |χ〉 are given. It is well known that a state |�〉
and eiγ |�〉 represent the same physical states, despite different
values of the overall phase “γ .” However, the superposition
of these states depends upon the values of the respective
overall phases of the constituent states. While the global
phase of a state is intangible, it is possible to determine the
overall phase of a state with respect to a reference state.
Here we use the partial prior information given in terms of
the inner products 〈χ |�i〉 to obtain the overall phase factors,
eiγ = 〈χ |�i〉/|〈χ |�i〉|. The details of the protocol are worked
out in the following stanzas. Thus, for the class of states
|�i〉 = eiγi |ψi〉 that are equivalent to each other up to an overall
phase, γi ∈ [0,2π ], the desired superimposed state may be
written as a|ψ1〉 + b|ψ2〉.

Beginning with an explicit analysis for the superposition
of two single-qubit pure states, we consider a system of two
coupled spin-1/2 particles (denoted here as A and X) under the
action of a Hamiltonian,

H = −�AAz ⊗ IX − �XIA ⊗ Xz + JAz ⊗ Xz, (1)

where �A (�X) is the resonance frequency and Az (Xz) is
the z component of angular momentum for spin A (X). J

represents the scalar coupling constant. |0〉A,|1〉A (|0〉X,|1〉X)
are the eigenvectors of Az (Xz) with eigenvalues +1/2,−1/2
respectively. The single-qubit pure states of our system are
encoded in the eigenbasis {|00〉,|01〉,|10〉,|11〉} of the Hamil-
tonian H . We use the subspace spanned by |00〉, |01〉 of H

to store the single-qubit input state |�1〉 = c00|0〉 + c01|1〉,
where |c00|2 + |c01|2 = 1, while the subspace spanned by the
two remaining levels is used to store the input state vector
|�2〉 = c10|0〉 + c11|1〉, where |c10|2 + |c11|2 = 1. The state of
the two-qubit system (A + X) is then

|�〉′ = a|0〉 ⊗ eiγ1 |ψ1〉 + b|1〉 ⊗ eiγ2 |ψ2〉, |a|2 + |b|2 = 1,

(2)

where a and b are the weights of the superposition. In Eq. (2),
the first qubit is the ancilla and the second qubit is the
system qubit. The superposition protocol that we propose here
generates the desired superimposed state, irrespective of the
values of phase factors (say, eiγj with j th input state) [4]. Given
any fixed state |χ〉 of the system qubit (such that 〈χ |ψi〉 �= 0),
prior knowledge of the inner products 〈χ |ψ1〉 and 〈χ |ψ2〉 is
exploited to find the phases eiγj . Using this information, we

construct a phase gate (eiθz(Az⊗IX)), which implements a z

rotation on the first qubit by an angle θz = γ1−γ2

2 , leading to
the state

|�〉′′ ≡ ei
γ1+γ2

2 (a|0〉|ψ1〉 + b|1〉|ψ2〉). (3)

Thus the phases with the individual single-qubit states are
modified and appear as an overall phase of the two-qubit state.
In Appendix A, a detailed view of an alternative protocol is
given to encode the states |ψ1〉, |ψ2〉 and to get rid of their
phases eiγ1 , eiγ2 , respectively. Further, a Hadamard gate on the
first qubit in Eq. (3) leads to the state (ignoring the overall
phase ei

γ1+γ2
2 )

|�〉′′′ ≡ |0〉√
2

(a|ψ1〉 + b|ψ2〉) + |1〉√
2

(a|ψ1〉 − b|ψ2〉). (4)

Depending upon the state of the first qubit, one can choose
between the sum or difference of the single-qubit states |ψ1〉
and |ψ2〉: a measurement on the first qubit in the basis {|0〉,|1〉}
gives rise to the state a|ψ1〉 + b|ψ2〉 of the second qubit
(in the case of outcome |0〉), which is proportional to the
desired superposed state Nψ (a|ψ1〉 + b|ψ2〉) (Nψ being the
normalization constant) obtained with a success probability
N2

ψ/2. Thus, with the help of only one ancillary qubit, we are
able to superpose two single-qubit states. Also, eiγi does not
show up in the final superposed state, which implies that the
overall phase factors of the constituent states do not alter the
resultant superimposed state in this protocol.

In the present context, no-go theorems concerning the
implementation of unknown quantum operations [13–15] are
circumvented by using the general protocol, which creates
“arbitrary” pairs of input states within the given constraints.
It is important to note that no extra information regarding
arbitrary pairs of input states is used further in the superposition
protocol.

III. EXPERIMENTAL IMPLEMENTATION

The NMR pulse sequence to carry out weighted superposi-
tion of two single-qubit states is shown in Fig. 1, where the first
channel corresponds to the ancillary qubit A and the second
channel corresponds to the system qubit X (here labeled as
1H and 13C, respectively). The pulse sequence is divided into
three blocks: initial, encoding, and superposition, as mentioned
in Fig. 1. In the first block, system and ancillary qubits are
jointly initialized in state |00〉. A single-qubit rotation by
an angle 2δ about the ŷ axis is applied on the ancillary
qubit, generating the state a|00〉 + b|10〉 (with a = cos δ and
b = sin δ). The second block, labeled “encoding,” encodes
the arbitrary pair of single-qubit states. This is achieved by
two two-qubit controlled operations that encode the second
qubit with state |ψ1〉 when the first qubit is in state |0〉,
and with state |ψ2〉 when the first qubit is in state |1〉. Each
controlled operation is achieved by a controlled rotation of
the second qubit by an angle (θj )nj

where the state of the
first qubit, |j 〉 (j ∈ {0,1}), is the control. The axis of rotation
n̂j = cos(φj )ŷ + sin(φj )x̂. At the end of this step [labeled
as (ii) in Fig. 1], the joint state of the system and ancilla
is given by a|0〉|ψ1〉 + b|1〉|ψ2〉, such that the encoded state
|ψj 〉 is parametrized by {θj−1,φj−1} (j = 1,2). This encoded
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FIG. 1. NMR pulse sequence to obtain a superposition of two
single-qubit states starting with the pseudopure state |00〉. The
two channels show the operations on ancilla (1H) and system
qubits (13C), respectively. Pulse sequence is divided into three
parts, shown as separate blocks of different colors. Also, various
steps are numbered from (i)–(v). The radio-frequency pulses are
shown as rectangles, with the respective angles of rotation men-
tioned at the top and the axes of rotation specified at the bottom.
The arbitrary rotation axes are l̂0 = cos( 3π

2 + φ0)x̂ + sin( 3π

2 + φ0)ŷ,
l̂′0 = cos(φ0)x̂ + sin(φ0)ŷ, l̂1 = cos(π + φ1)x̂ + sin(π + φ1)ŷ, and
l̂′1 = cos( π

2 + φ1)x̂ + sin( π

2 + φ1)ŷ. At the end of the sequence, a
single-qubit measurement is performed on the system qubit.

two-qubit state is then fed into the block named “superposi-
tion,” wherein possible overall phases of the arbitrary input
states ψ1 and ψ2 are taken care of by applying a z pulse of
angle � = γ1−γ2

2 on the first qubit, leading to the state given
in Eq. (3). This is followed by a pseudo-Hadamard gate on the
ancillary qubit, which is a 90◦ pulse about the ŷ axis (along
negative y direction), leading to the joint state of the system
and ancilla as given in Eq. (4). A partial readout of the
system qubit leads to the expected superposed state. In all the
experiments, the referential state (|χ〉) is chosen as |0〉.

As discussed in the theoretical scheme, the measurement
consists of a projective measurement on the first qubit (|0〉〈0| ⊗
I2X2), followed by a partial-trace operation that retains the
state of the second qubit. The measurement applies therefore
only to the subspace spanned by the eigenvectors |00〉 and
|01〉 of H . Experimentally, the corresponding information is
contained in the coherence between these two states. Thus the
final superposed state is recovered from a two-dimensional
subspace by partial quantum state tomography. This approach
may also be useful in different experiments as a replacement of
projective readout. The desired single-qubit density operator
is obtained by a set of two operations: (i) direct readout, to
obtain the information about the single-quantum coherence
between states |00〉 − |01〉 and (ii) application of a gradient
(Gz), followed by a 90◦ pulse about the y axis [( π

2 )2
y] on the

second qubit, to obtain the relative populations of the energy
levels |00〉 and |01〉. In both cases, we observe the spectral
line corresponding to transition |00〉 − |01〉. The resultant
single-qubit density operator is un-normalized in this protocol.
The normalization constant for the desired part of the density
operator can be obtained experimentally by measuring the sum
of the populations of states |00〉 and |01〉. This is achieved by
applying a gradient to dephase the coherences, followed by a
spin-selective 90◦ pulse on the first qubit [Gz( π

2 )1
y]. A readout

of the resultant NMR spectrum of the first qubit provides
the normalization constant for the desired subspace. This
normalization factor is then used to completely characterize
the final state density operator of the superposed state.

The pulse sequence shown in Fig. 1 is implemented exper-
imentally on a sample consisting of 13C labeled chloroform
in deuterated acetone. The experiments were performed on a
500 MHz Bruker Avance II NMR spectrometer with a QXI
probe head. All pulses were high-power, short-duration rf
pulses applied to the 1H and 13C spins on resonance. The scalar
coupling constant J = 215 Hz. The spin-spin relaxation times
(T ∗

2 ) of the 1H and 13C spins were 540 and 170 ms, respectively.
Nuclear spin systems at thermal equilibrium are in a mixed
state. The system was thus initialized into a pseudopure state
|00〉 by spatial averaging [16] with a fidelity of 0.999. Starting
from this pseudopure state, various pairs of single-qubit states
(|ψ1〉 and |ψ2〉) were encoded on a two-qubit system, as
described earlier.

In order to ensure the accuracy of this experimental imple-
mentation, two-qubit density operators were tomographed at
the end of steps (ii) and (iv) of the pulse sequence (Fig. 1), thus
obtaining the state after encoding (ρ(ii)

exp) and the state before
the measurement (ρ(iv)

exp ), respectively. The two-qubit states
were completely reconstructed with a set of four operations:
{II,IX,IY,XX}, where X(Y) refers to a spin-selective 90◦
pulse along the x(y) axis. The single-qubit density operator
of the system qubit is obtained through two operations on the
system qubit: {I,GzY}, where Gz is the nonunitary gradient
implementation about the z axis. The resultant single-qubit
reduced density operator is then normalized as described
earlier in this section. The fidelity between the theoretically
expected (ρt ) and the experimentally obtained (ρe) states was
measured using the following expression:

F = Tr(ρeρt )/
√

Tr
(
ρ2

e

)
Tr

(
ρ2

t

)
. (5)

Table I summarizes the results of various experiments,
where columns 2 and 3 show the single-qubit pure states to be
superposed, and column 5 contains the fidelity (F) between

TABLE I. Summary of experimental results.

S. no. Input state |ψ1〉 Input state |ψ2〉 a

b
F

1 |0〉 1√
2
(|0〉 + |1〉) 1 0.996

2 |0〉 1√
2
(|0〉 + e

iπ
4 |1〉) 1 0.995

3 |0〉 1√
2
(|0〉 + e

iπ
2 |1〉) 1 0.997

4 |0〉 1√
2
(|0〉 + eiπ |1〉) 1 0.997

5 1
2 (|0〉 + √

3|1〉) 1
2 (

√
3|0〉 + |1〉) 1 0.998

6 1
2 (|0〉 + e

iπ
4
√

3|1〉) 1
2 (

√
3|0〉 + e

i2π
3 |1〉) 1 0.974

7 1
2 (|0〉 + √

3|1〉) 1
2 (

√
3|0〉 + |1〉) 2 0.999

8 1
2 (|0〉 + √

3|1〉) 1
2 (

√
3|0〉 + |1〉) 3 0.999

9 1
2 (|0〉 + √

3|1〉) e
2πi

3

2 (
√

3|0〉 + |1〉) 1 0.999

10 1
2 (|0〉 + e

iπ
4
√

3|1〉) e
2πi

3

2 (
√

3|0〉 + e
i2π

3 |1〉) 1 0.981

11 |0〉 sin π

36 |0〉 + cos π

36 |1〉 1 0.988
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FIG. 2. (a)(b) The theoretical input states from dataset 3 of Table I; (c) the two-qubit state after encoding (ρ(ii)
exp ); (d) the state obtained at the

end of step (iv) of the pulse sequence (ρ(iv)
exp ); (e),(f) the final experimentally obtained (ρexp) corresponding to step (v) and theoretically expected

(ρth) single-qubit superposed states, respectively.

the experimentally superposed states and the theoretically
expected ones. In the datasets numbered 1–4 of Table I,
we have |ψ1〉 = |0〉 and |ψ2〉 = 1√

2
(|0〉 + eiφ2 |1〉), with φ2 ∈

{0, π
4 , π

2 ,π}. Each of these pairs corresponds to the same two
conical sections as per their Bloch sphere representations.
Similarly, the datasets numbered 5 and 6 of Table I show
the superposition between two pairs of states from the same
respective conical sections. A detailed tomographic analysis
corresponding to dataset 3 (Table I) is shown in Fig. 2. We
also generated superpositions of the same constituent states
with different weights, as given in datasets 5, 7, and 8 of
Table I. For completeness, the experiments were performed
with different overall phases of the input states. These phase
factors were introduced while encoding the states |ψ1〉 and
|ψ2〉 by applying a pulse of angle 2δ about the axis ‘l̂′, which
is aligned with the y axis at an angle π + γ2 (Fig. 1). The
encoded state is thus of the form a|0〉|ψ1〉 + eiγ2b|1〉|ψ2〉.
Experiments were performed for two pairs of states shown
in datasets 9 and 10 in Table I. In both cases, γ2 = 120◦ and
the remaining parameters were the same as those of sets 5
and 6 in Table I. Now compare the datasets 5 with 9, and 6
with 10. As expected, the presence or absence of the overall
phase does not affect the final superposed state. The efficacy
of this experimental scheme does not directly depend upon the
values of the overlaps (|〈χ |ψi〉|). This is evidenced by dataset
11 of Table I, where |ψ2〉 is very close to |χ⊥〉 (orthogonal to
|χ〉). Table I shows that even if we choose the pair of input
states (|ψ1〉,|ψ2〉) outside the set {(|ψ1〉,|ψ2〉) : |〈χ |ψ1〉| =
const, |〈χ |ψ2〉| = const}, our procedure still generates the ex-
pected superposition state a|ψ1〉 + b|ψ2〉 with high accuracy.

IV. SUPERPOSITION OF MULTIPLE QUDITS

Our procedure can be readily extended to the superpo-
sition of arbitrary pure states of n qudits (d-dimensional
quantum system) [4]. Let a1,a2, . . . ,an be the desired co-
efficients for creating a superposition of n (d-dimensional)
states |�1〉d ,|�2〉d , . . . ,|�n〉d . This requires a hybrid (n ×
d)-dimensional qunit-qudit system, where the qunit (n-
dimensional quantum system) acts as an ancilla (as before)
and the qudit acts as the system. For simplicity, we use
a vector representative |�〉j to represent the set of states
eiγj |�〉j , where γj ∈ [0,2π ]. Consider now a d-dimensional
referential state |χ〉d whose nonzero overlaps, |〈χ |�j 〉d |2 = cj

(j ∈ {1,2, . . . ,n}), are known. Following the same protocol as
before, every qudit state is encoded in the n × d basis vectors of
the hybrid qunit-qudit system: |j0〉, |j1〉, |j2〉, . . . ,|j (d − 1)〉,
where j ∈ {0,1, . . . ,n − 1}. The phases of the constituent
states are taken care of by using the information of overlaps of
the respective constituent states with the referential state (see
Appendix A). This is then followed by Fourier transformation
of the qunit, which is in fact the generalization of the Hadamard
operation to higher-dimensional states [17]. The resultant state,
which is a generalization of the two-qubit state in Eq. (4), is

1

N
√

n

n−1∑
j=0

(
|j 〉n ⊗

n∑
k=1

(f j (k−1)ak|�k〉d )

)
, (6)

where f = ei 2π
n is the nth root of unity and N is the normal-

ization constant. An arbitrary superposition of n pure states
of a qudit is then obtained by the projective measurement
|0〉n〈0|n ⊗ Id×d subsequently tracing out the qunit. The final
state is a superposition of n d-dimensional states, which along
with the information of overall phase factors of the constituent
(n-qudits) states is (from Appendix A)

|�〉 = N�

N
√

n

n∑
k=1

ak

⎛
⎝ n∏

(j �=k,j=1)

〈χ |�j 〉d√
cj

⎞
⎠|�k〉d , (7)

where N� is a constant that normalizes the un-normalized state
obtained after the projective measurement. The superposed
state |�〉 [Eq. (7)] is obtained with the success probability

P = N2
�

N2n
=

∏n
j=1 cj∑n

j=1 a2
j cj

N2
�

n
. (8)

V. DISCUSSION

As per the superposition protocol discussed in Ref. [4], a
projector |μ〉〈μ| (where |μ〉 ∝ √

c1|0〉 + √
c2|1〉) is applied on

the first qubit to obtain the superposed state. It is discussed in
[11] that precision of the implementation of this operator highly
depends upon the values of |〈χ |ψ1〉| and |〈χ |ψ2〉|. Smaller
values of these overlaps lead to huge errors. Detailed analysis
of this issue is carried out by Li et al. [11], where it is shown that
when any of the overlap values (|〈χ |ψ1〉|, |〈χ |ψ2〉|) approaches
zero, the protocol unexpectedly results in the final states with
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poor fidelities. It has been clearly stated in Ref. [11] that the
malfunctioning of the protocol, as |〈χ |ψ1〉| or |〈χ |ψ2〉| → 0,
is mainly due to experimentally unavoidable imprecisions in
the implementation of the |μ〉〈μ| ⊗ I ⊗ I projection operator.
However, in the protocol implemented here, no such projector
is used. Instead, we implement a Hadamard operator which,
due to its ease to implement, neatly gives the resultant state.
This is also reflected in one of our experimental results (Table I,
dataset 11) where, despite the very small value of the overlap
between the referential state and the constituent state, the
experimental superimposed state is obtained with good fidelity.
Thus the precision of our protocol is actually independent of
the values of these overlaps, which makes this protocol more
experimentally feasible.

A closer analysis of the success probabilities obtained in
different superposition protocols and for different amount of
prior information is given in following sections.

A. Comparison between general two-qubit- and
three-qubit-based implementations

In this section, we compare the success probabilities ob-
tained in our scheme with that of a previously implemented
scheme [4,11] to carry out the superposition of two single-qubit
states. For the purpose of comparison, we start with same
amount of resources. Thus we use the protocol discussed in
Sec. II to obtain the present two-qubit-based scheme from
the existing three-qubit-based scheme [4] to superimpose two
single-qubit pure states. Recalling Eq. (A7), the resultant
superposed state is given as√

c1c2

2(c1|a|2 + c2|b|2)

(
a

〈χ |ψ2〉
|〈χ |ψ2〉| |ψ1〉 + b

〈χ |ψ1〉
|〈χ |ψ1〉| |ψ2〉

)
.

(9)
The success probability in this case is given as P2 =

c1c2
2(c1|a|2+c2|b|2)N

2
ψ . Here, Nψ is the normalization factor for

state a|ψ1〉 + b|ψ2〉 (where
√

|a|2 + |b|2 = 1). Recalling the
treatment in a three-qubit-based protocol [4,11], the resultant
state in that case is given as√

c1c2

c1 + c2

(
a

〈χ |ψ2〉
|〈χ |ψ2〉| |ψ1〉 + b

〈χ |ψ1〉
|〈χ |ψ1〉| |ψ2〉

)
. (10)

The success probability in this case is P3 = c1c2
c1+c2

N2
ψ . Compar-

ing the success probabilities resulting from these two protocols,
we have

rp = P2

P3
= c1+c2

2(c1|a|2+c2|b|2)
= rc+1

2[1+|b|2(rc−1)]
, (11)

where rc = c2
c1

∈ (0,∞), |a|2,|b|2 ∈ (0,1), and rp ∈ (0,∞).
The same value of success probabilities (P2 and P3) results
in the case in which the overlaps c1 = c2 or the superposition
is obtained with equal weights, i.e., |a|2 = |b|2. Figure 3 shows
the variation rp vs rc at different values of |b|2. It is interesting
to note that our two-qubit-based protocol outperforms the
three-qubit-based protocol (in terms of success probabilities)
in the range 0.5 < |b|2 < 1 (when 0 < rc < 1) and in the range
0 < |b|2 < 0.5 (when 1 < rc < ∞). With reference to Table I,
experimental dataset 7 has rc = 3, |b|2 = 0.2 and dataset 8
corresponds to rc = 3, |b|2 = 0.1, which correspond to rp > 1
as per Fig. 3.

FIG. 3. The variation of rp = P2/P3 is shown with the ratio of
overlaps, with rc = c2/c1 corresponding to different values of |b|2.
Different curves correspond to different values of |b|2, which are
specified on the right side of the plot. Two black points on the curves
for |b|2 = 0.1, 0.2 correspond to experimental conditions of datasets
7 and 8 of Table I.

B. Enhancement in success probability
subject to prior information

In general, there is an interplay between the success proba-
bility with which the desired superposed state is obtained and
the amount of prior information regarding constituent states.
We impose certain constraints on the constituent states and
observe its impact on the success probabilities. Reconsidering
the problem of superposition of two single-qubit states having
fixed nonzero overlaps, |〈χ |ψ1〉|2 = c1 and |〈χ |ψ2〉|2 = c2,
with the referential state |χ〉 [4], we have |〈χ⊥|ψ1〉|2 = c⊥

1 =
1 − c1 and |〈χ⊥|ψ2〉|2 = c⊥

2 = 1 − c2, where 〈χ |χ⊥〉 = 0. In
this case, we consider the action of the identity operator U1 =
I ⊗ I ⊗ (|χ〉〈χ | + |χ⊥〉〈χ⊥|) (instead of I ⊗ I ⊗ |χ〉〈χ |).
Using the overlaps of the input states with both |χ〉 and
|χ⊥〉, we observe an increase in the success probability (see
Appendix B). Further, we implement the single-qubit unitary
operator Uχ (Uχ⊥) on the first qubit, if the third qubit is in state
|χ〉 (|χ⊥〉) (see Appendix B for details). The explicit forms of
the operators are

Uχ = 1

N1

⎛
⎝ 1√

c1

1√
c2

1√
c2

−1√
c1

⎞
⎠, Uχ⊥ = 1

N2

⎛
⎝

1√
c⊥

1

1√
c⊥

2

1√
c⊥

2

−1√
c⊥

1

⎞
⎠,

where N1 = √
(c1 + c2)/c1c2, N2 =

√
(c⊥

1 + c⊥
2 )/c⊥

1 c⊥
2 . In

this formalism, we mainly study two types of constraints, in
which both |ψ1〉 and |ψ2〉 lie in the (i) same longitudinal plane
and the (ii) same transverse plane of the Bloch sphere, In
case (i), the desired superposed state is obtained with success
probability

P tot = N2
ψ

(
c1c2

c1+c2
+ c⊥

1 c⊥
2

c⊥
1 +c⊥

2

)
= P3+N2

ψ

c⊥
1 c⊥

2

c⊥
1 +c⊥

2

. (12)

For c1 = c⊥
2 , the success probability P tot = 2P3 becomes

double that of the ordinary case. In case (ii), we have c1 = c2 =
c (say), which implies c⊥

1 = c⊥
2 = c⊥ (say). Further, assuming

both states occupy diametrically opposite positions on the
respective spherical sections of the Bloch sphere, the total
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success probability obtained then is given by

P tot = N2
ψ

(
c

2
+ c⊥

2

)
= 1

2
N2

ψ, (13)

which is again greater than P3. Further, if both states lie in
the equatorial plane, this pair of states becomes orthogonal
and the success probability reaches 1/2. Equations (12) and
(A6) give higher success probabilities (for certain a,b values)
compared to the a,b-dependent protocol discussed in Ref. [4].
Recently, we came across a different approach [18], analyzing
the superposition of an arbitrary pair of orthogonal states.

VI. CONCLUSIONS

We have experimentally created a superposition of single-
qubit states in the defined framework, covering all possible
aspects, i.e., (i) creation of various single-qubit states and
obtaining their superposition, (ii) superposition with arbitrary
weights, and (iii) superposition of single-qubit states in the
presence of assumed overall phases. All the experimental re-
sults have been obtained with fidelities over 0.97. This protocol
has also been extended for the superposition of multiple states
of a qudit. We have also discussed certain special cases where
the desired superposed state is obtained with enhanced success
probability.
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APPENDIX A: ENCODING SCHEME

Let us discuss the case of the superposition of an n number
of pure states of a qudit. Consider a d-dimensional referen-
tial state |χ〉d , whose overlap (magnitude) with each of the
constituent states is known. Therefore, assume |〈χ |�j 〉d |2 =
cj , where j ∈ {1,2, . . . ,n}. Let a1,a2, . . . ,an be the desired
weights for creating a superposition of d-dimensional states
|�1〉d ,|�2〉d , . . . ,|�n〉d , respectively. We begin with the initial
state,

1

N
(a′

1|0〉n + a′
2|1〉n + · · · + a′

n|n − 1〉n)

⊗|�1〉d ⊗ · · · ⊗ |�n〉d , (A1)

where N is the normalization factor, which is equal to√∑n
j=1 a′2

j . This state belongs to a [n × (d)n]-dimensional

Hilbert space, where the primed coefficients are

a′
k = ak∏n

(j �=k,j=1) |〈χ |�j 〉d | = ak√∏n
(j �=k,j=1) cj

. (A2)

This initial state is then made to undergo a series of controlled-
SWAP operations, CS1

2,3CS1
2,4 . . . CS1

2,n, where the state of the
first spin acts as the control. In order to describe the action
of this operation, let us reconsider the set of bases vectors of
the control spin (|k〉n, k ∈ {0,1, . . . ,n − 1}) in n-dimensional
Hilbert space; whenever the first spin (qunit) is in state |k〉n,
states of the first qudit (second spin) and the (k + 1)th qudit
[(k + 2)th spin] get swapped. The resulting state is of the form

1

N
(a′

1|0〉n ⊗ |�1〉d ⊗ |�2〉d ⊗ · · · ⊗ |�n〉d
+ a′

2|1〉n ⊗ |�2〉d ⊗ |�1〉d ⊗ · · · ⊗ |�n〉d + · · ·
+ a′

n|n − 1〉n ⊗ |�n〉d ⊗ |�3〉d ⊗ · · · ⊗ |�1〉d ). (A3)

This is then acted upon by a set of projection operators
constructed using the referential state |χ〉d . The operator per-
forming the n − 1 number of projections on qudits numbered
2 to n (or spins numbered 3 to n + 1 in the 1-qunit ⊗ n-qudit
system) is given as In×n ⊗ Id×d ⊗ ⊗n

k=2(|χ〉d〈χ |d )k , where k

represents the qudit number. This helps to remove the phases
that may be occurring with the constituent states (|�〉d ’s). The
resulting state is given as

1

N

n∑
k=1

⎡
⎣ak

⎛
⎝ n∏

(j �=k,j=1)

〈χ |�j 〉d√
cj

⎞
⎠|k − 1〉n|�k〉d

⎤
⎦ n−1⊗

m=1

|χ〉d .

(A4)

Tracing out states of qudits numbered 2 to n, we are left with a
(n × d)-dimensional state. Also, shedding the overall phases,
the state in Eq. (A4) is written in a simple manner,

1

N
(a1|0〉n|�1〉d + a2|1〉n|�2〉d + · · · + an|n − 1〉n|�n〉d ),

(A5)
where N =

√∑n
i=1 |a′

i |2. In the case of superposition of two
qubits with weights a1 = a and a2 = b, the above equation is
reduced to

1

N

(
a

〈χ |�2〉
|〈χ |�2〉| |0〉 ⊗ |�1〉 + b

〈χ |�1〉
|〈χ |�1〉| |1〉 ⊗ |�2〉

)
. (A6)

This is the two-qubit encoded state, which, after Hadamard
implementation on the first qubit followed by a projection
operator |0〉〈0| ⊗ I , gives rise to the expected superposed state
given as

1√
2N

(
a

〈χ |�2〉
|〈χ |�2〉| |�1〉 + b

〈χ |�1〉
|〈χ |�1〉| |�2〉

)
. (A7)

The additional factor 1
N

=
√

c1c2
c1|a|2+c2|b|2 . Thus we reduce the

existing three-qubit-based protocol described in [4] to the
present two-qubit-based protocol described in the main text.
It is to be noted that the state given by Eq. (A6) has already
taken care of the overall phases of states |�1〉 and |�2〉.

APPENDIX B: PRIOR INFORMATION
AND SUCCESS PROBABILITIES

There is an interplay between the amount of prior in-
formation needed to superimpose a pair of partially known
single-qubit pure states and the success probability with which
the resultant superposed state is obtained. In this appendix, we
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discuss the superposition protocol for a pair of single-qubit
pure states under additional constraints that further leads to
enhanced success probability. We reconsider the problem of
superposition of two arbitrary single-qubit states with known
nonzero overlaps, |〈χ |ψ1〉|2 = c1 and |〈χ |ψ2〉|2 = c2, with the
referential single-qubit state |χ〉. Thus one can obtain the
overlaps of the constituent states with |χ⊥〉 (single-qubit state
orthogonal to |χ〉). We have |〈χ⊥|ψ1〉|2 = c⊥

1 = 1 − c1 and
|〈χ⊥|ψ2〉|2 = c⊥

2 = 1 − c2. Let us begin with a three-qubit
initial state, similar to the one given in Eq. (A1),

(a|0〉 + b|1〉) ⊗ |ψ1〉 ⊗ |ψ2〉. (B1)

This state is then acted upon by the same three-qubit controlled-
SWAP operation as described in Appendix A, such that the
resulting state is

a|0〉 ⊗ |ψ1〉 ⊗ |ψ2〉 + b|1〉 ⊗ |ψ2〉 ⊗ |ψ1〉. (B2)

Consider the action of the identity operator U1 = I ⊗ I ⊗
(|χ〉〈χ | + |χ⊥〉〈χ⊥|) on the three-qubit state given in Eq. (B1).
The resultant state is given as

[a〈χ |ψ2〉|0〉|ψ1〉 + b〈χ |ψ1〉|1〉|ψ2〉] ⊗ |χ〉
+ [a〈χ⊥|ψ2〉|0〉|ψ1〉 + b〈χ⊥|ψ1〉|1〉|ψ2〉] ⊗ |χ⊥〉. (B3)

Another controlled unitary operation is implemented on the
first qubit, where the state of the third qubit acts as the control.
Subject to the state of the third qubit (|χ〉 or |χ⊥〉), the action
of this controlled operation (on the first qubit) is described as

U|χ〉|0〉 → 1

N1

(
1√
c2

|0〉 + 1√
c1

|1〉
)

,

U|χ〉|1〉 → 1

N1

(
1√
c1

|0〉 − 1√
c2

|1〉
)

,

U|χ⊥〉|0〉 → 1

N2

⎛
⎝ 1√

c⊥
2

|0〉 + 1√
c⊥

1

|1〉
⎞
⎠,

U|χ⊥〉|1〉 → 1

N2

⎛
⎝ 1√

c⊥
1

|0〉 − 1√
c⊥

2

|1〉
⎞
⎠, (B4)

where

1

N1
=

√
c1c2

c1 + c2
and

1

N2
=

√
c⊥

1 c⊥
2

c⊥
1 + c⊥

2

.

Equation (B3) thus leads to

a

N1

( 〈χ |ψ2〉√
c2

|0〉 + 〈χ |ψ2〉√
c1

|1〉
)

|ψ1〉 ⊗ |χ〉

+ b

N1

( 〈χ |ψ1〉√
c1

|0〉 − 〈χ |ψ1〉√
c2

|1〉
)

|ψ2〉 ⊗ |χ〉

+ a

N2

⎛
⎝ 〈χ⊥|ψ2〉√

c⊥
2

|0〉 + 〈χ⊥|ψ2〉√
c⊥

1

|1〉
⎞
⎠|ψ1〉 ⊗ |χ⊥〉

+ b

N2

⎛
⎝ 〈χ⊥|ψ1〉√

c⊥
1

|0〉 − 〈χ⊥|ψ1〉√
c⊥

2

|1〉
⎞
⎠|ψ2〉 ⊗ |χ⊥〉. (B5)

Application of the projection operator |0〉〈0| ⊗ I2×2 ⊗ I2×2

then leads to

1

N1

(
a

〈χ |ψ2〉
|〈χ |ψ2〉| |ψ1〉 + b

〈χ |ψ1〉
|〈χ |ψ1〉| |ψ2〉

)
⊗ |χ〉

+ 1

N2

(
a

〈χ⊥|ψ2〉
|〈χ⊥|ψ2〉| |ψ1〉 + b

〈χ⊥|ψ1〉
|〈χ⊥|ψ1〉| |ψ2〉

)
⊗ |χ⊥〉.

(B6)

Thus we obtain the weighted superpositions of single-qubit
states |ψ1〉 and |ψ2〉. If the state of the second qubit here is |χ〉,
then the superposed state

|�(1)〉 = N
(1)
ψ

N1

(
a

〈χ |ψ2〉
|〈χ |ψ2〉| |ψ1〉 + b

〈χ |ψ1〉
|〈χ |ψ1〉| |ψ2〉

)
(B7)

is obtained with a success probability P (1) = (N (1)
ψ )2 c1c2

c1+c2
.

While corresponding to the second-qubit state |χ⊥〉, the su-
perposed state

|�(2)〉 = N
(2)
ψ

N2

(
a

〈χ⊥|ψ2〉
|〈χ⊥|ψ2〉| |ψ1〉 + b

〈χ⊥|ψ1〉
|〈χ⊥|ψ1〉| |ψ2〉

)
(B8)

is obtained with a success probability P (2) = (N (2)
ψ )2 c⊥

1 c⊥
2

c⊥
1 +c⊥

2
.

N
(1)
ψ and N

(2)
ψ are the normalization factors of the first-qubit

state when states of the second qubit are |χ〉 and |χ⊥〉,
respectively, in Eq. (B6). States given in Eqs. (B7) and (B8)
are weighted superpositions of the same constituent states |ψ1〉
and |ψ2〉. But they may be different because of their possibly
different relative phases. The situation of our interest arises
when |�(1)〉 varies from |�(2)〉 only up to a global phase.
Following are a few special cases discussing such scenarios.

1. Both states belong to the same longitudinal plane
on the Bloch sphere

Assume now that both |ψ1〉 and |ψ2〉 lie in the same
longitudinal plane on the Bloch sphere, as shown in Fig. 4.

More explicitly, for 〈χ⊥|ψj 〉
|〈χ⊥|ψj 〉| = eιφ 〈χ |ψj 〉

|〈χ |ψj 〉| , Eq. (B6) takes the
form(

a
〈χ |ψ2〉
|〈χ |ψ2〉| |ψ1〉 + b

〈χ |ψ1〉
|〈χ |ψ1〉| |ψ2〉

)
⊗

(
1

N1
|χ〉 + eιφ

N2
|χ⊥〉

)
.

(B9)

x
y

z

φ

|χ

|ψ1

|ψ2

FIG. 4. Bloch sphere representation of |ψ1〉, |ψ2〉, and |χ〉,
marked with an unfilled red circle, filled blue circle, and filled black
square, respectively.
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Tracing out the second qubit, we obtain

√
1

N2
1

+ 1

N2
2

Nψ

(
a

〈χ |ψ2〉
|〈χ |ψ2〉| |ψ1〉+b

〈χ |ψ1〉
|〈χ |ψ1〉| |ψ2〉

)
, (B10)

which is the desired superposed state. This superposed state is
obtained with success probability

P tot = N2
ψ

(
c1c2

c1 + c2
+ c⊥

1 c⊥
2

c⊥
1 + c⊥

2

)
= P3 + N2

ψ

c⊥
1 c⊥

2

c⊥
1 + c⊥

2

.

(B11)

This can as well be written as P tot = P + P ⊥, where P =
( Nψ

N1
)
2

and P ⊥ = ( Nψ

N2
)
2
. Putting another constraint, c1 = c⊥

2 ,
we obtain N1 = N2, which gives rise to the desired superposed
state with a success probability

P tot = 2N2
ψ

c1c2

c1 + c2
= 2P. (B12)

2. Both states belong to the same transverse plane
on the Bloch sphere

In this case, we have c1 = c2 = c (say), which implies
c⊥

1 = c⊥
2 = c⊥ (say). Equation (B5) thus leads to

1

N
|0〉

(
a
〈χ |ψ2〉√

c
|ψ1〉 + b

〈χ |ψ1〉√
c

|ψ2〉
)

⊗ |χ〉

+ 1

N
|1〉

(
a
〈χ |ψ2〉√

c
|ψ1〉 − b

〈χ |ψ1〉√
c

|ψ2〉
)

⊗ |χ〉

+ 1

N
|0〉

(
a
〈χ⊥|ψ2〉√

c⊥ |ψ1〉 + b
〈χ⊥|ψ1〉√

c⊥ |ψ2〉
)

⊗ |χ⊥〉

+ 1

N
|1〉

(
a
〈χ⊥|ψ2〉√

c⊥ |ψ1〉 − b
〈χ⊥|ψ1〉√

c⊥ |ψ2〉
)

⊗ |χ⊥〉.

(B13)

Further, assuming both states occupy diametrically opposite
positions on the respective spheric sections of the Bloch sphere,
the azimuthal angles of the two states may be considered as φ

and π + φ. Under the action of projection operator |0〉〈0| ⊗
I ⊗ |χ〉〈χ |, Eq. (B13) gives rise to the desired superposed state

1

N1

(
a
〈χ |ψ2〉√

c
|ψ1〉 + b

〈χ |ψ1〉√
c

|ψ2〉
)

(B14)

with a success probability P = ( Nψ

N1
)2. Note that with the

projection operator |1〉〈1| ⊗ I ⊗ |χ⊥〉〈χ⊥|, Eq. (B13) gives
rise to the desired superposed state

1

N2

(
a
〈χ⊥|ψ2〉√

c⊥ |ψ1〉 + b
〈χ⊥|ψ1〉√

c⊥ |ψ2〉
)

(B15)

with a success probability P ⊥ = ( Nψ

N2
)2. The total success

probability obtained in the above two instances is

P tot = P + P ⊥ = N2
ψ

(
1

N2
1

+ 1

N2
2

)
= 1

2
N2

ψ. (B16)

Further, if both states lie in the equatorial plane, this pair
of states becomes orthogonal and the success probability
reaches 1/2. Equations (B11) and (B16) give higher success
probabilities (for certain a,b values) compared to the a,b-
dependent protocol discussed in the supplemental material
of Ref. [4].
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