
JOURNAL OF MAGNETIC RESONANCE 43, 259-281 (1981) 

Two-Dimensional Chemical Exchange and Cross-Relaxation 
Spectroscopy of Coupled Nuclear Spins 

S.MACUFLA,* Y. HUANG,? D. SUTER, AND R.R. ERNST 

Laboratorium fiir Physikalische Chemie, Eidgeniissische Technische Hochschule, 
8092 Ziirich, Switzerland 

Received October 30, 1980 

The features of two-dimensional cross-relaxation and chemical exchange spec- 
troscopy of coupled spins are investigated theoretically and by experiment. It is shown 
that spin-spin couplings can lead to J cross-peaks in analogy to cross-peaks in two- 
dimensional autocorrelated spectroscopy. They reflect a coherent magnetization 
transfer in contrast to the incoherent processes responsible for cross-relaxation and 
for chemical exchange. Possibilities of selectively suppressing J cross-peaks are 
discussed. 

I. INTRODUCTION 

Recent experiments have demonstrated that two-dimensional (2D) exchange 
spectroscopy (I ) is a powerful and promising technique for the elucidation of 
chemical exchange processes (2) and of magnetization exchange by cross- 
relaxation, leading to nuclear Overhauser effects (NOE) (3,4), in a large variety 
of chemical systems from mixtures of one-spin molecules to complex biological 
macromolecules. We define here the term “magnetization exchange” or simply 
“exchange” to comprise both “chemical exchange” and “exchange by cross- 
relaxation.” We combine chemical exchange and cross-relaxation in a unified 
treatment. 

Two-dimensional exchange spectroscopy allows one to trace out complete 
networks of exchange processes by a surprisingly simple technique resulting in an 
extraordinarily enlightening 2D map. The appearance of a cross-peak indicates 
chemical or magnetization exchange between two sites within one molecule or 
between several molecules. However, this straightforward analysis of 2D exchange 
spectra is possible only in the absence of spin-spin interactions, for these inter- 
actions can also lead to additional cross-peaks in a 2D exchange spectrum. We 
call them J cross-peaks. 

J cross-peaks arise from a coherent magnetization transfer via a quantum- 
mechanical coupling network whereas the chemical exchange and the cross- 
relaxation or NOE cross-peaks reflect incoherent transfer processes. J cross- 
peaks therefore have characteristic properties different from those of the exchange 
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cross-peaks. There is a close analogy to the cross-peaks well known from 2D 
autocorrelated spectroscopy (5-9). These features enable one to design proce- 
dures for their distinction and selective suppression. 

The basic scheme of 2D exchange spectroscopy (Z-3) is sketched in Fig. 1. 
A first (7r/2), pulse creates transverse magnetization. The following evolution 
period, tl, serves to “frequency-label” the various magnetization components by 
their Larmor frequencies. The time t1 is varied from experiment to experiment. A 
second (7r/2), pulse restores the x component along the z axis for the subsequent 
mixing period of length r, during which the slow exchange process may take 
place. A last (7r/2), pulse again generates transverse magnetization to make evident 
the product of the exchange process. The major complication in coupled spin 
systems arises from the additional creation of zero-, single-, double-, and higher- 
quantum coherence by the second (n/2), pulse, which is also transformed into 
observable magnetization by the third pulse. This coherence is responsible for the 
occurrence of J cross-peaks. 

In the next section we present the theoretical basis for 2D chemical exchange 
and 2D NOE spectroscopy of coupled spin systems. Section III exemplifies the 
essential features, by an explicit treatment of a weakly coupled two-spin system. 
Techniques suitable for the suppression of the undesired J cross-peaks are 
described, finally, in Section IV. 

II. THEORY OF MAGNETIZATION EXCHANGE IN COUPLED SPIN SYSTEMS 

In this section we give a formal treatment of magnetization exchange in 
coupled spin systems which is sufficiently general to handle coherent and in- 
coherent exchange processes simultaneously. Readers more interested in the 
practical aspects of 2D spectroscopy may skip this section and consult the explicit 
treatment of cross-peaks in a two-spin system described in Section III. 

The description of magnetization exchange in systems without spin-spin 
couplings (1,3) can be based on the Bloch equations modified to include chemical 
exchange (10-22) or cross-relaxation (13 -15). However, for exchange in coupled 
nuclear spin systems, it is necessary to use a full density operator treatment. 

We start with a generalized density operator equation (11, 12, 16-19) which 
includes both cross-relaxation and chemical exchange processes: 

k(r) = -i[X, u(r)] - k{u(f) - u()} + Bu. [II 
The relaxation superoperator P drives the system toward the equilibrium state 
(T,, while $ represents the effects of chemical exchange. 

The relaxation superoperator p is best expressed in terms of the Redfield 
relaxation matrix (20, 21) or in the operator form given by Abragam (14). The 
chemical exchange superoperator g, on the other hand, is conveniently repre- 
sented in the form (16) 

iu = c L [XjUX~’ - PI. 
j ?j 

The summation here runs over all independent chemical exchange processes of 
the system considered with the exchange lifetimes 7+ The operator Xj is the 
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chemical exchange operator which expresses the reordering of the base functions 
caused by the chemical exchange processj (16). For intermolecular exchange, 
the situation is somewhat more complicated as it is necessary to enlarge the 
Hilbert space to include all molecules involved (16-18). 

The equilibrium density operator (T,, commutes with the Hamiltonian, [X’, u,,] 
= 0, and is not modified by chemical exchange, ea, = 0. It is therefore possible to 
write Eq. [I] in the condensed form 

$(u(r) - uo) =lf{u(r> - uo} 131 

with the superoperator L” representing the combined action of the Hamiltonian 
superoperator 9, the relaxation superoperator I’, and the chemical exchange 
superoperator 2. 

2 = -i$-k + i, ?+A = [X, A]. 141 

The evolution of the density operator in a 2D exchange experiment, shown in 
Fig. 1, can be computed in complete analogy to the procedure developed for 2D 
correlated spectroscopy (5). We denote by (T(O) the density operator after prepa- 
ration by a 7r/2 pulse at the beginning of the evolution period. For u(tl) at the end 
of the evolution period, we then obtain 

u(tl> = exp(A&(O) + [ 1 - exp(lat l)]cO [51 
and after the mixing period of length T,,,, we find 

o(fl) + [I - exp(laT,)]aO . [61 

The superoperator i,(7r/2) represents here the actions of the (r/2), pulses at the 
beginning and at the end of the mixing period, 

R,j:)o = exp(-i;F.)oexp(i;F,) , 171 

with F, = Cj Zjy* The projection superoperator fi expresses the suppression of 
certain magnetization components during the mixing period by a magnetic field 
gradient pulse or by phase-shifted pulse sequences (cf. Section IV). During 
detection, we obtain the density operator 

u(tl, T,, t2) = exp(A2)u(tl, T,, 0) + [l - exp(ltt,)]u,. PI 
We are exclusively interested in the cross- and auto-peaks of the resulting 2D 

spectrum and disregard the axial peaks which originate from terms involving 
uo. We can therefore simplify the expression for u(tl, T,, tz) by neglecting all 
those terms which explicitly depend on uo: 

u(t,, T,, f2) = exp(Et,)K, t exp(Am)Z%& f exp&,)u(O). 
( 1 ( 1 

191 

The eigenvalues of the superoperator e determine, as usual, resonance fre- 
quencies and linewidths of the resonance lines in the 1D spectrum as well as 
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those of the peaks in the 2D spectrum in both frequency dimensions. The complex 
peak intensities and phases, on the other hand, are given by the matrix elements 

WI 

with F+ = Cj (I,, - iZjjy). 
In general the intensities Z&mn contain contributions both from random and from 

coherent exchange processes acting in the course of the mixing time 7,. The 
purpose of the experiment, however, is exclusively the pursuit of the random 
exchange processes coming from chemical exchange or cross-relaxation. The 
random exchange processes are governed by the relaxation superoperator p and 
the chemical exchange superoperator & . The coherent exchange, on the other 
hand, is caused by the spin-spin couplings which effect a differential precession 
of the various coherence components during the mixing period T,,,. 

The features of the exchange cross-peaks resulting from Eq. [lo] have been 
discussed extensively elsewhere (I ,3) on the basis of solutions of modified Bloch 
equations. Here we concentrate on the features of the J cross-peaks which occur 
exclusively in coupled spin systems. 

III. CROSS-RELAXATION AND CHEMICAL EXCHANGE IN THE WEAKLY 
COUPLED TWO-SPIN SYSTEM 

The relevant features of 2D exchange spectroscopy in coupled spin systems 
can most easily be explained by considering a weakly coupled two-spin-l/2 
system with the two Larmor frequencies flnA and fiB and with the scalar spin-spin 
coupling constant J. The system may involve cross-relaxation between nuclei A 
and B as well as a chemical exchange process interchanging the two nuclei. 

(a) Preparation 

The experiment starts with the system in thermodynamic equilibrium with the 
density operator u. = F, = ZAr + ZBz (neglecting numerical factors). The first 
(1~/2)~ pulse (Fig. 1) creates the initial state u(0) = F, = IAx + I,,. 

The following evolution for the time tl for frequency labeling leads to the density 
matrix (written in the eigenbase of the Hamiltonian) 

lo P2* 4 o\ 

Ull 

with the four coherence functions 
%(fd = exp(in,,t,).exp(-t,lT,A), 

%(td = exp(inAzt,).exp(-tl/TzA), 
WI 

PdtJ = exp(inBlt,).exp(-tlIT2B), i-l,, = f-h, - o1 - 512, 

MfA = exp(i~get,).exp(-t,lT2B), fkez = f& - a1 + J/2. 
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FIG. 1. Basic scheme of 2D exchange spectroscopy with indication of the density operators 
representing the states of the system. P = preparation period, E = evolution period, M = mixing 
period, D = detection period. 

We designate the four single-quantum transitions of the AB spin system by Al, 
AZ, B1, and B, and the corresponding coherence functions by (Ye, (Ye, pl, and &. 
The resonance frequencies are indicated in a frame rotating with the carrier fre- 
quency o1 of the rf pulses. They correspond to the observed frequencies after 
phase-sensitive detection and are in the audiofrequency range. 

The second (7r/2), pulse at the beginning of the mixing period creates the 
following initial condition for the exchange process: 

( 

--Wa, + a2 + PI + P21 Reh - a21 - i ImU% + P2> 

cr(tI o) = 1 Reb, - a21 + i Im@ + PA W-al - a2 + PI + P21 3 
4 i Im{a, + a2} + Re{P1 - &} i Im{-a, + ap + p1 - &} 

i Im{-a, + (Y* - p1 + &} i Im{a, + (Y*} + Re{-P1 + &} 

-i Im{a, + a2} + Re{& - &} i IdaI - a2 + PI - P21 

i Imh - a2 - PI + P21 -i Im{a, + oZ} + Re{-PI + p2} 

i 

’ 
[I31 

Reh + a2 - PI - P21 +Re{ -a1 + a2} - i Im{& + p2} 

Re{-o1 + a2} + i Im{& + p2} Reh + a2 + PI + P21 
All matrix elements of a(rl, 0), including the zero- and double-quantum elements, 
are normally different from zero and affect the following mixing process. 

(b) The Mixing Process 
The evolution of C( t 1, 7,) during the mixing period is of central importance for 

the study of exchange processes. It is determined by the superoperator i, defined 
in Eq. [4], which includes the actions of the Hamiltonian, of relaxation, and 
possibly of chemical exchange, For the computation of the density operator 
cr(tl, rm) at the end of the mixing period of length 7, (Eq. [9]), 

dtI, ~~1 = ewLCTmb(tI, Oh v41 
it is convenient to consider the elements of cr(tl, 0), Eq. [13], as components 
of a vector on which the (super)matrix exp{,$T,,,} acts. If we order the elements of 
o in the following way: diagonal elements (1 l), (22), (33), (44), zero-quantum 
coherence (23), (32), single quantum coherence (12), (13), (21), (31), (24), (34), 
(42)) (43)) and double-quantum coherence ( 14)) (41)) we obtain the supermatrix <i> 
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I 
(11)  

I (22)  
I 

(33)  

(44)  

(23)  

(32)  

(12)  

(2)  = 
(13)  

(21)  

(31)  

(24)  

(341 

(42)  

(431 

l t (14)  

1 
I I 

with the matrix elements 

a= 

b= 

c= 

d= 

e= 

f= 

g = -i(R* - i-i,) 

h= 

i = i(fi, - C&J 

I 1 UJ (41)  

-  WlA -  WlB -  w2 

WIB 

WIA 

W2 

- Wo - WlA - WlB - ~/TAB 

WO + l/TAB 

- l/T’zO’ - ~/TAB 

l/TAB 

- l/T’zO’ - ~/TAB 

k = i(f& - o1 + J/2) 

1 = i(O, - w1 + J/2) 

m = -i(f& - w1 + J/2) 

n = -i(fIA - o1 + J/2) 

p = -i(& - o1 - J/2) 

4 = -i& - w1 - J/2) 

r = i(& - w1 - J/2) 

s = i(fi, - o1 - J/2) 

t = -i(C4* + CtB - 24 

u = i(fI, + f& - 20,) 

WI 

- l/T’,: - ~/TAB 1161 
- l/T::: - ~/TAB 

- l/T;ld - l/TAB 

- l/T& - l/TAB 

- l/T& - l/TAB 

- l/T::: - l/TAB 

- l/T’,‘, - ~/TAB 

- l/Ti’J - l/TAB 

- l/T:? 

- 1/Ti2’ 

Relaxation is represented by the zero-quantum transition probability Wo, the two 
single-quantum transition probabilities W 1A and WIB, and the double-quantum 
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FIG. 2. Transition frequencies R, transition probabilities W, and transverse relaxation times 
T2 in a weakly coupled two-spin system. 

transition probability W2 and by relaxation rates for zero-quantum coherence, 
l/T$O’, for single-quantum coherence of the A and B transitions, l/T;% and l/T@, 
and for double-quantum coherence, l/T~z) (cf. Fig. 2). The average time between 
two exchange processes is denoted by TAB. 

The matrix tit> has a characteristic block structure. First, we notice that there 
are no off-diagonal elements between matrix elements of cr belonging to different 
orders of transitions. It is therefore natural to separate the density matrix u(tl, 0) 
into the four parts 

u(t,, 0) = uyt,, 0) + u’O’(t,, 0) + uyt,, 0) + d2’(t,, 0). 1171 

The part @(t,, 0) consists of the four diagonal elements oll, uz2, (TV, and CT~~, 
which represent z magnetization, while cr’O’(t,, 0), @(t,, O), aC2’(tl, 0) contain 
the elements of zero-quantum coherence, (Tag, and oZ2, single-quantum coherence, 
u12, u13, u219 u319 u24, u34~ ~42, and u43, and double-quantum coherence, u14 and 
Use, respectively. This separation is portrayed in Fig. 3. 

The elements representing coherence are connected at most pairwise by the 
matrix (l) whereby all off-diagonal elements of (i) are caused by chemical ex- 
change. In the absence of chemical exchange or for slow exchange, i.e., for 
l/rAB < 1 flA - fia I, the off-diagonal elements disappear or can be neglected and 
the transverse coherence components evolve independently. 

It turns out that uCz)(fl, 0) is responsible for cross-relaxation or chemical ex- 
change cross-peaks. The zero-quantum, single-quantum and double-quantum 
coherences lead to the J cross-peaks. For fast exchange processes ~/TAB - 1% 
- fia I, zero- and single-quantum coherence may also affect the exchange cross- 
peak contribution. 

For a detailed discussion of the various contributions to the cross-peaks, we 
must specify the relevant relaxation mechanisms. We assume (1) relaxation by 
intramolecular dipolar interaction between A and B nuclei, and (2) external random 
field relaxation to represent all additional relaxation mechanisms. 

(1) Relaxation by Intramolecular Dipolar Interaction 

For intramolecular dipolar relaxation, the following expressions apply to 
Eq. [161, 
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0 (Z) (p’ &I’ Q (a 

FIG. 3. Subdivision of the density matrix into different orders: a(*) + z magnetization, o-(O) -+ zero- 
quantum coherence, dl) + single-quantum coherence, o(*’ + double-quantum coherence. 

l/Tk”‘d = (1/4)qAB[2J(0) + 6J(Q)], 

l/T&’ = l/Thid = (1/4)qAB[SJ(O) + 6J(R) + 6J(2rcZ)], 

l/T$z’d = (1/4)qAB[6J@2) + 12J(2Q], [I81 
w8 = w)q*BJ(o), 

w‘4 = W?B = w)qABJw, 
w: = 3q*Bww, 

with the relaxation constant 

qAB = ( l/lo)(~h2r~;)2 H91 

and with the spectral density function 

WI 

with the correlation time 7C of the molecular tumbling process. (The definition 
of J(w) in Ref. (3) is different by a factor of 2.) The symbol R represents the 
Larmor frequencies nA and aB of the homonuclear spin system. 

In the extreme narrowing limit, for short correlation time, T, << l/n, we find 

l/T&‘Ad = llTigd = 8.5qABTc, Pll 
1/Ti2jd = 9qABTc, 

w8 = qABTcv w?A = WfB = (3/2)qAB7,, w2 = 6q.dc. 

On the other hand, for long correlation times, 7, 9 l/R, in the spin-diffusion 
limit, we obtain 
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l/T&$d = l/Ti%!’ = 2.5q,,7,, 

l/TP’d = 0 9 

w: = qABTc, wf, = wil, = w$ = 0. 

267 

v21 

(2) Relaxation by External Random Fields 
We assume two random fields BA( t) and BB( t) acting on the two weakly coupled 

nuclei A and B, respectively. The random fields may originate from dipolar cou- 
plings to additional nuclei within or outside of the molecule considered or from 
paramagnetic impurities in the sample. The two random fields may be partially 
correlated, with the correlation coefficient 

- -- 
C = BABB/(B~B&)“~. [231 

This leads to the relaxation rates 

-- 
l/TiO” = f {[E + @I - 2C(B2,BfyqJ(O) + (E + ~).I@)}, 

l/T;% = $ [IQ(O) + (l.E + ~)J(~)], 

-- 
l/T&2” = $ {[E + FE + 2C(Bz,B2,)“2]40) + (R + E)J(O)}, [241 

w, = w; = 0, 

w;, = x = A, B. 

Let us assume in the following that the two random fields have equal vari- 
ances, FA = pB = p. In the extreme narrowing limit, r, + lKl, we then obtain the 
simplified expressions 

l/T:“‘r = (2/3)y2&[2 - C], 

l/T;l” = y2&, 

1/Ti2” = (2/3)r2&[2 + C], [251 
w; = w; = 0, 

wy = (1/3)y%%,. 

In the spin-diffusion limit, rc % l/Q, on the other hand, we find 

l/T$O” = (2/3)y2%J1 - C], 

l/T;l” = ( 1/3)y2%,, 

1/TL2” = (2/3)y2%,[1 + C], 1261 

w; = w: = w;: = 0. 
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(c) Cross-Peaks in a 20 Exchange Spectrum 

After this excursion to describe relaxation during the mixing process, we return 
to the calculation of the coherent and incoherent exchange processes during the 
mixing time which are responsible for the various cross-peaks in a 2D exchange 
spectrum. Following Eq. [17] and Fig. 3, we treat separately cross-peaks caused 
by the exchange of z magnetization, by the zero-quantum coherence and by the 
double-quantum coherence. Transverse magnetization or single-quantum co- 
herence can be eliminated easily by a compensation experiment proposed in 
Ref. (3) and further described in Section IV. We therefore do not consider the 
effects of transverse interference caused by single-quantum coherence. 

(1) Cross-Peaks Resulting from the Diagonal Elements of the Density 
Operator, dL) 

The diagonal part of the density matrix u(tl, 0), Eq. [13], can be written in 
the operator form 

with 
c+)(fl, 0) = cP(t,, O)Z,, + /P(fl, O)Z& 1271 

dz)(tl, 0) = -(l/2) Re{a,(t,) + a2(t,)}, 

PYfl, 0) = -W) WPl(tl) + Pdtd), 
WI 

and with the coherence functions aI( etc., of Eq. [Q]. 
First, let us disregard relaxation and chemical exchange. The diagonal elements 

do not, in this case, change during the mixing period. They are transformed by 
the third (7r/2), pulse into the following coherence functions which can be observed 
during the detection period: 

a:Z’(t,, T,, t2) = -(lM)(cos flAltl + cos flRA2tl) exp(iR,,t,), 

#(t,, T,, t2) = -(lM)(cos f&t1 + cos flArtl) exp(iR,t,), 

PY’( t 1, T,, t.J = -(1/4)(cos f2,,t, + cos &tl) exp(i&&, 

Pet 1, T,, t.J = -(lM)(cos f&t, + cos fkszt,) exp(iR,,t,). 

We assume that the x component of the magnetization, 

(F,)(t 1, em, fd = Tr {F.dtlr 7rnv td), 

is detected and we obtain 

1291 

1301 

(F.r)(t,, em, tz) = -(1/4)(cos i-&&l + cos fl*2tl)(COS i-i*& + cos f-l*&) 

- (lM)(cos R&l + cos i-i&l)(COS n&3 + cos i-l&). [31] 

Equation [29] demonstrates that the two mixing pulses cause an equal distribution 
of the total A-spin (or B-spin) coherence cos flAltl + cos f2.&, (or cos &t, 
+ cos flsztl) among the transitions A1 and A, (or B, and B2). It leads to a coherence 
exchange among the components within each multiplet and to pairs of auto- and 
cross-peaks equal in phase and intensity within the diagonal A and B multiplets. 
This is shown in Fig. 4. 
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FIG. 4. Buildup of a 2D exchange spectrum from its constituent parts: u(* leads to exchange 
cross-peaks in the form of cross-peak multiplets equal in intensity in 2D absorption mode. u(O) 
causes 2D dispersive auto- and cross-peaks all equal in absolute intensity but with alternating signs. 
The contribution from o(r) is normally suppressed experimentally. 19 produces 2D dispersive auto- 
and cross-peaks equal in absolute intensity. The sign pattern is different for the zero-quantum and 
double-quantum contributions. 

Let us now consider the additional effects of cross-relaxation or of chemical 
exchange during the mixing time. The density operator @(fl, 0) of Eq. [27] is 
equivalent to the case of a two-spin system without spin-spin coupling. We can 
therefore directly use the results derived in Ref. (3) for an uncoupled spin system. 

For the density operator at the end of the mixing period we find 

cqt,, 7,) = cP(f~, Tm)z*z + p(fl, T,)Z& 
with 

a’“‘(f1, 7,) = ~‘z’(~I, 0)~~‘4‘4(~nl) + P(‘YfI, O)‘h4(7,), 

PYt1, 7,) = CwfIl O).~*&nl) + PYfl, O)*aE!&m). 

The mixing coefficients aA* * . . are given by Eq. [25] of Ref. (3): 

aAA@d = h&rn) = (112) exp(-RLrd f exp(-&Tdl 

and 

WI 

[331 

aA&d = aBA(Tm) = *(l/2) exp(-&.7d - exp(-&~m)l~ 1341 

where the plus sign applies to chemical exchange and cross-relaxation near the 
spin-diffusion limit and the minus sign to cross-relaxation near extreme narrowing. 
When we assume equal efficiencies for the external random field relaxations for 
nuclei A and B, i.e., WY, = W:, = W;, we find for the leakage relaxation rate 
RL and for the cross-relaxation rate Rc 
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RL=2Wt+2W:+W:+L + wg - wg - wg - -L ) 
TAB rAB [351 

Rc= W;-W;-’ . 
rAB 

The transition probabilities W are given by Eqs. [ 181, [21], [22], and [24]-1261. 
It is essential to note that the A-spin and B-spin z-magnetization functions 

(~(“)(t~, 0), PCz)(tl, 0) which are involved in the exchange process, Eq. [33], contain 
the coherence functions crl(t,), a2(fl) and &(tl), &(tl), respectively. This means 
that the “entire multiplet” exchanges. We find therefore in the 2D spectrum 
cross-peak multiplets with four peaks equal in intensity whenever exchange takes 
place. This behavior is sketched in Fig. 4. 

(2) .I Cross-Peaks Due to Zero-Quantum Coherence 

In the slow exchange limit, the zero-quantum coherence elements (23) and (32) 
of Eq. [13] precess during the mixing time 7, with the difference frequency 
nA - f& and are transformed by the third (7r/2&, pulse into the following single- 
quantum coherence components (neglecting relaxation): 

PP’(f 1, Tm, f2) = f (sin &tl - sin fiAZtl - sin flB1tl f sin &2t1) 

x cos [(& - fiBbm1 exp(ifiBdd, 

/%Ytl9 Trn9 t2) = $(-sin n&t1 + sin fiAZtl f sin flsltl - sin f&&l) 

x cos i(fiA - flB)7ml exp(ifiBdd. 

The phase of these terms is in quadrature to those of Eq. [29] and the resulting 
peaks will be dispersive when the contributions of Eq. [29] are phase adjusted to 
become absorptive. The zero-quantum coherence terms contribute in equal amount 
(except for the signs) to all possible auto- and cross-peaks of the 2D spectrum 
including the cross-peaks within and between the A and B multiplets (cf. Fig. 4). 
Their intensities are cosine modulated by the zero-quantum precession during the 
mixing time 7, with the precession frequency & - f&. Because of this depend- 
ence on cos (flA - f&&m, intensities and signs of the J cross-peaks may vary 
within one spectrum of a multispin system from multiplet to multiplet. 
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The maximum intensities are obtained for vanishingly short mixing time and are 
identical to those of the maximum NOE or chemical exchange cross-peaks. 

Zero-quantum cross-peaks are attenuated by the zero-quantum relaxation 
during the mixing time and their intensities are proportional to exp(-T,,,/T$O)). 
The zero-quantum coherence is relaxed, according to Eqs. [21] and [22], by dipolar 
relaxation in the extreme narrowing as well as in the spin-diffusion limit. In 
addition, there is normally also a contribution from random field relaxation. 
However, it should be noted that zero-quantum coherence is not affected by com- 
pletely correlated random fields equal in strength nor by magnetic field in- 
homogeneity. Chemical exchange between A and B will lead to an additional 
attenuation proportional to exp( -r,,,/T& (Eq. [ 161). 

(3) J Cross-Peaks Due to Double-Quantum Coherence 

Double-quantum coherence existing during the mixing period causes the follow- 
ing transverse magnetization during the detection period (we again suppress re- 
laxation terms for simplicity): 

@(tl, TV, tz) = $ {-sin flAlt, + sin flA2tl - sin ~,,t, + sin f&t,} 

x cos KR4 + f43 - 2d5-ml =wGfMd, 

ai2)(tl, TV, f.J = 6 {sin Ln,,r, - sin Q&, + sin Rsltl - sin fIB2f2} 

x cos WA + QB - 2~1)Tmlew(~fL2f2), r371 

P:“(tl, T,, f.J = 6 {-sin ~2Altl + sin flA2tl - sin Cl,,t, + sin fiB2tl} 

x cos [(a, + OB - ~wJT~] exp(i&t,), 

PYYtl, Trnv ’ t2) = i {sin fiAltl - sin fiAzt2 + sin .RB1tl - sin ~ezt,} 

X cos [(fl, + fl, - 20,)~,] exp(i&t2). 

It is interesting to note that for short mixing time, 7, + 0, the AB cross-terms 
due to the double-quantum coherence exactly cancel the corresponding zero- 
quantum cross-terms of Eq. [36]. On the other hand, the zero- and double-quantum 
effects on the autopeaks and on the AA and BB cross-peaks are additive (cf. 
Fig. 4). The dependence of the amplitude of the double-quantum J cross-peaks on 
the mixing time T, is determined here by the sum of the two Larmor frequencies 
fiA + fizB - 2w,. It is Often a rapidly varying function of T,. 

Double-quantum coherence is quite efficiently relaxed by dipolar relaxation in 
the extreme narrowing limit, Eq. [21]. However, in the spin-diffusion limit, the 
dipolar AB interaction no longer affects the double-quantum coherence (cf. Eq. 
[22]) and, consequently, the double-quantum J cross-peaks may become con- 
siderably stronger than the zero-quantum J cross-peaks in this limit. External 
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random field relaxation attenuates the double-quantum J cross-peaks, even for 
completely correlated random fields (Eq. [24]). In addition, double-quantum 
coherence is quite sensitive to magnetic field inhomogeneity (22). However, it 
is not affected by chemical exchange (cf. Eq. [16]). 

(d) Numerical Examples of Cross-Peak Intensities 

In this section we discuss three characteristic cases of cross-relaxation in the 
weakly coupled two-spin system. We assume the use of the dual phase-shifted 
experiment of Eq. [41] which suppresses J cross-peaks due to single-quantum 
coherence but leaves zero-quantum and double-quantumJ cross-peaks unaffected. 

(1) Cross-Relaxation near Extreme Narrowing Conditions 

We assume a two-spin-l/2 system with exclusively intramolecular AB dipolar 
relaxation in a low-viscosity solution with fly, = 0.0628, fl/2~ = 100 MHz, and 
7, = lo-lo sec. Figure 5 shows the auto- and cross-peak intensities plotted as 
functions of the mixing time T,,,. The intensities are normalized to the maximum 
autopeak intensity (reached for T, = 0) and refer to signals phase adjusted to 2D 
absorption mode. The peak values of the corresponding 2D dispersion-mode 
signals are smaller by a factor of 4. 

In Figs. 5A and B, a homogeneous magnetic field has been assumed. The NOE 
contribution to the autopeak intensities decays biexponentially for increasing 
mixing time 7, while the cross-peaks increase to a maximum (negative) intensity 
of approximately 0.19 and then also decay to zero. The dispersive J-peak contribu- 
tions (cf. Fig. 4), originating from zero- and double-quantum coherence, decay 
exponentially with the time constants 1/T&o’ = 4.00q,B7, and 1/Tk2’ = 8.90 x ~ABT~. 
For Fig. 5, we assume QABTC = 0.06 set-‘. For a longer mixing time, the zero- 
quantum contribution with the characteristic slow precession frequency domi- 
nates. For the autopeaks, the NOE andJ-peak contributions are equal in amplitude 
for 7, = 0 and remain comparable in amplitude for 7, # 0. The cross-peaks, 
on the other hand, are dominated by the J-peak contribution which may become 
larger than the maximum NOE cross-peak intensity by as much as a factor of 5. 
At r,,, = 0, zero- and double-quantum contributions to the cross-peaks compen- 
sate each other exactly and the J cross-peak intensity starts at zero for T,,, = 0. 

Figures 5C and D show peak intensities in the presence of an inhomogeneous 
static magnetic field. The double-quantum contribution is affected exclusively. 
It decays fast for increasing mixing time (22). 

An experimental example of J cross-peak intensities is presented in Fig. 6. 
The intensity of a cross-peak in the 2D proton spectrum of 1 ,Zdibromothiophene 
is plotted as a function of T, for two ranges of 7, values, (A) 0.19 set 5 T, s 0.23 
set and (b) 1.50 set 5 7, s 1.56 sec. The indicated points stem from experimental 
measurements of the peak intensities in phase-sensitive 2D spectra. The solid line 
originates from a computer simulation with the following parameters: &/2%- - o1 
= 171.8 Hz, fiB/2,r - o1 = 140.5 Hz, T ‘2”’ = 0.31 set, Ti2’ = 0.69 sec. In addi- 
tion, a Gaussian broadening of the double-quantum transition by magnetic field 
inhomogeneity had to be assumed, causing a further damping of the double- 
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FIG. 5. Auto- and cross-peak intensities in a 2D NOE spectrum of a weakly coupled two-spin system 
near the extreme narrowing approximation for a~, = 0.0628, fY27r = 100 MHz, and T, = lo-lo sec. 
The 2D absorptive NOE peaks and 2D dispersive contributions of J peaks are shown separately as 
functions of the mixing time r,,,. z magnetization and zero-quantum and double-quantum coherence 
have been considered. Single-quantum coherence is assumed to be eliminated. (A) Autopeak intensities 
in homogenous static field. (B) Cross-peak intensities in homogenous static field. (C) Autopeak 
intensities in inhomogenous static field causing an additional damping of the double-quantum coherence 
proportional to exp(- 1.47,). (D) Cross-peak intensities under the same conditions as those in (C). 

quantum coherence proportional to exp(-27&). At short mixing times, Fig. 6A, 
zero-quantum and double-quantum contributions are apparent while at longer mix- 
ing times, Fig. 6B, only the zero-quantum contribution remains appreciable in 
amplitude, because of rapid relaxation and defocusing of the double-quantum 
coherence. Cross-relaxation is negligible in this case. 

(2) Cross-Relaxation for Intermediate Correlation Times 

We consider here the case of an intermediate-sized molecule with a slow 
tumbling rate such that the correlation time 7, fulfills the condition 07, = 0.68, 
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FIG. 6. Experimental cross-peak intensities for the two-spin proton system 1,Zdibromothiophene 
recorded at 90 MHz. Single-quantum coherence has been eliminated by a compensating phase-shifted 
dual experiment (cf. Section Iv). The solid lines stem from a computer simulation with parameter 
values indicated in the text. Two restricted ranges of 7, values are shown in (A) and (B). 
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FIG. 7. Auto- and cross-peak intensities in 2D NOE spectrum of a weakly coupled two-spin system 
for intermediate correlation time s17, = 0.628, N27r =- 100 MHz, and 7, = lo+’ sec. The presentation 
is similar to that of Fig. 5. A homogeneous static magnetic field is assumed. (A) Autopeak intensities. 
(B) Cross-peak intensities. 

fl/29r = 100 MHz, and 7C = 10m9 sec. We assume exclusively dipolar relaxation 
caused by the AB interaction and obtain the following parameter values: l/T&O) 
= 3.154,,7,, 1/Ti2’ = 4.48qABrc, Rc = 2.65q,,r,, R, = 4.15q,,r,. The leak- 
age relaxation rate is dominant. It strongly attenuates the NOE cross-peaks such 
that the J cross-peak contributions will primarily determine the cross-peak 
intensities unless J cross-peaks are purposely suppressed by the techniques 
described in Section IV. 

Figure 7 gives the auto- and cross-peak intensities as functions of the mixing 
time rm assuming quart = 0.6 set-‘. The NOE cross-peaks are negative and reach 
a maximum value of approximately 0.09. For still slower tumbling, the NOE 
cross-peak intensities pass through zero and become positive when the spin- 
diffusion limit is approached. 

(3) Cross-Relaxation near the Spin-Diffusion Limit 

We assume a solution of large molecules with long rotational correlation time, 
s17, = 6.28, fiJ27r = 100 MHz, and 7, = IO-* sec. In the spin-diffusion limit, 
%, 4 1, the leakage rate RL and the double-quantum dipolar relaxation rate 
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FIG. 8. Auto- and cross-peak intensities in 2D NOE spectrum of a weakly coupled two-spin system 
near the spin-diiTusion limit for fire = 6.28, W27r = 100 MHz, and 7c = lo-* sec. In addition to 
relaxation by dipolar AB interaction, uncorrelated random field relaxation with equal effects on both 
spins is assumed. The presentation is similar to that of Fig. 5. (A) Autopeak intensities. (B) Cross- 
peak intensities including zero-quantum and double-quantum J cross-peak contributions. (C) Separate 
plot of cross-peak contribution coming exclusively from zero-quantum coherence during the mixing 
period. 

l/T;? become zero. For a realistic model, it is therefore necessary to include 
interactions with further spins. We represent them by two uncorrelated external 
random fields equal in strength acting on spins A and B. We find the following 
rate constants: 

l/T:O’ = l.O7q*,T, + l.Oly%%::, 

l/T?’ = O.llq,,7, + 1.01y2B27;, 

Rc = 1.93q.,~,, 

RL = O.l5q,,T, + 0.35@7;. 

[381 

For the computer simulation, we used the VSB.IeS qAgTC = 6 SeC-’ and y2F~L 

= 0.9 see-‘. 
The resulting auto- and cross-peak intensities are presented in Fig. 8. The NOE 

autopeak intensity decays initially rapidly with the cross-relaxation rate Rc and 
reaches a state which slowly decays to zero with the much smaller leakage rate 
RL. Here the NOE cross-peaks are positive and sizable in amplitude, approach- 
ing the maximum .I cross-peak contributions arising from zero- or from double- 
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quantum coherence. The zero-quantum coherence decays rapidly to zero in a time 
of the order of l/Rc while the double-quantum coherence persists for a much 
longer time and is damped primarily by external random field relaxation. 

In the majority of practical applications of 2D exchange spectroscopy, 2D 
absolute-value spectra will be recorded. It is then no longer possible to distinguish 
exchange peaks and J peaks on the basis of their absorptive or dispersive 
character. In addition, cross-terms between the exchange and J-peak contribu- 
tions will make the interpretation of the 2D spectra even more difficult. 

The examples presented in this section make clear that it is necessary to design 
techniques for the complete suppression of the undesired J peaks. The following 
section is devoted to a discussion of such techniques. 

IV. TECHNIQUES FOR ELIMINATING J CROSS-PEAKS 

For the elimination of J cross-peaks due to the presence of single-quantum 
or double-quantum coherence during the mixing time, there are two simple and 
efficient techniques. However, the suppression of J cross-peaks due to zero- 
quantum coherence is more difficult. Let us consider first the suppression of 
single- and double-quantum coherence. 

(a) Application of a Magnetic Field Gradient Pulse 

A magnetic field gradient pulse applied in the course of the mixing period 
defocuses single-, double-, and higher-order coherence and leads to a rapid 
destruction of all elements of (+(“), IZ 2 1. However, it does not affect longitudinal 
magnetization, @, nor does it influence the zero-quantum coherence o(O). The 
application of a magnetic field gradient pulse, although an efficient and simple 
means for suppressing part of the J cross-peak intensity, is undesirable in many 
circumstances as it interferes with the NMR field frequency lock system. It is 
often more convenient to apply phase-shifted pulse sequences as follows, 

(b) Phase-Shifted Pulse Sequences 

By the coaddition of the responses to phase-shifted pulse sequences it is possible 
to eliminate systematically the response of off-diagonal elements. This possibility 
relies on the fact that a simultaneous phase shift cp of the first two rf pulses causes 
a characteristic phase shift (P,,, of the coherence components of a(t,, 0) (22), 

(Pm = m-9, m =O, 1,2,. . . , [391 

for m-quantum coherence. 
A dual experiment with the following pulse phases for the three pulses, 

Y Y Y 

-Y -Y YY 

and coaddition of the resulting responses leads, therefore, to the elimination of co- 
herence ~9) with m = 1, 3, 5, . . . . An equivalent dual experiment 

Y Y Y 

-Y Y -Y 
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has the additional advantage of eliminating also at the same time the axial peaks 
which originate from transverse magnetization created exclusively by the last pulse 
(3). A quadruple experiment with the phases 

Y Y Y 

-Y Y -Y 

x x Y 

-x x -Y, 
on the other hand, eliminates all coherence components up to m = 3 as well as the 
axial peaks. 

When quadrature phase detection is employed for the distinction of positive and 
negative frequencies in w2, it is convenient to utilize in addition systematic phase 
cycling (23) leading to a total of 16 experiments. For quadrature phase detection 
in ol, finally, it is necessary to perform an additional set of experiments with the 
phases of the third pulse shifted by 7r/2. This then requires 32 independent 
experiments. 

(c) Suppression of Zero-Quantum J Cross-Peaks 
The sequences of the previous section do not affect the zero-quantum coherence 

which is insensitive to phase shifts, according to Eq. [39], as well as to magnetic 
field inhomogeneity. 

As shown in Section III, J cross-peaks invariably form cross-peak multiplets 
with vanishing net intensity. In addition, they appear in quadrature phase with 
respect to the exchange and cross-relaxation cross-peaks which all have the same 
phase and sign. In a phase-sensitive spectrum, they can therefore be discovered 
easily. Two-dimensional J cross-peaks can also be identified by comparison with 
a conventional 2D autocorrelated spectrum obtained with a single m/2 mixing pulse 
(5). In such a spectrum “J cross-peaks” appear exclusively. However, one must 
take into consideration that cross-peaks may simultaneously receive contributions 
from coherent and incoherent transfer processes. In this case refined techniques 
are required to separate the two mechanisms. 

In the following we describe three techniques which allow the suppression of 
zero-quantum J cross-peaks. 

(1) Digital Filtering of the 20 Spectrum 

By filtering of a 2D spectrum with a one-dimensional or two-dimensional filter- 
ing function with a width larger than the relevant J coupling constants, it is possible 
to suppress the J cross-peaks selectively because of the vanishing net intensity 
of J cross-peak multiplets. Such a filtering effect can be obtained either by restric- 
tion of the maximum tl or t2 value in the sampling process or by a digital apodiza- 
tion in one or both of the two time domains. One may also consider convolution 
in the frequency domain. 

(2) Random Variation of the Mixing Time T,,, 

It has been demonstrated (Figs. 5-8) that the J cross-peak intensities depend 
in an oscillatory manner on the mixing time 7, due to the coherent precession of 
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FIG. 9. Two-dimensional exchange spectra of a mixture of dimethylacetamide and 1,2-dibromo- 
thiophene. One hundred twenty-eight FIDs with I~ values from 0 to 1024 msec have been recorded 
and submitted to a 2D Fourier transformation. A dual experiment according to Eq. [41] has been 
used to suppress single-quantum coherence and to eliminate the axial peaks. Top: A fixed mixing 
time T, = 212 msec is used. Bottom: The mixing time T, is varied randomly in the range 200 5 7, 
5 224 msec for the 128 experiments with different t, values. The J cross-peaks are circled. The 
spectra are frequency folded to bring all resonance peaks into a narrow frequency region. 

the zero- and double-quantum coherence. By coaddition of numerous free- 
induction decays from experiments with slightly different 7, values, it is therefore 
feasible to suppress the J cross-peaks without significantly affecting the NOE 
or chemical exchange peaks. The variation of 7, should cover at least one period of 
the smallest difference of resonance frequencies of coupled peaks in the sample. 

Instead of or in addition to performing several complete 2D experiments with 
different T, values it is also feasible to vary T, randomly within a single 2D 
experiment at the same time that t, is varied systematically. This time-saving 
procedure leads to a smearing of J peaks in the direction of the w, axis, causing 
an additional noise band instead of dominant peaks. 

An example of such a J cross-peak elimination is shown in Fig. 9 by means 
of a test sample consisting of a mixture of dimethylacetamide (DMA) and of 
1,2-dibromothiophene (DBT). DMA gives rise to chemical exchange cross-peaks 
apparent in the center of the spectrum. They are caused by the internal rotation 
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about the N-C bond. DBT, on the other hand, is a weakly coupled two-spin 
system and exhibits dominant J cross-peaks in the lower left and upper right 
corners of the 2D spectrum. Figure 9 gives two 2D spectra: with fixed r, value 
(top), and with random T, values (bottom). The selective disappearance of the 
J cross-peaks for random T,,, values is apparent. The slightly increased I, noise 
bands are due to the smearing effect mentioned. The exchange cross-peaks of 
DMA, on the other hand, are not affected by the randomization of 7,. 

(3) Partial Refocusing of the Zero-Quantum Evolution 
A similar variation of the zero-quantum precession phase can be achieved by 

applying in the course of the mixing period of fixed length r, a 180” pulse at a 
random position which is varied from experiment to experiment. One finds that 
chemical exchange and cross-relaxation effects are not affected by the position 
of the 180” pulse. However, the zero-quantum evolution becomes partially re- 
focused depending on the position of the additional pulse. This leads to a modula- 
tion of the amplitude and sign of the J cross-peaks which cancel upon addition of 
a sufficient number of experiments. 

The three techniques described for the suppression of zero-quantum J cross- 
peaks also attenuate or randomize single- and multiple-quantum J cross-peaks. 
The use of the phase-shifted pulse sequences described in Section IVb, however, 
may still be desirable because they lead to exact cancellation of single- and double- 
quantum J cross-peaks. 

For practical realizations of 2D exchange spectroscopy, it is thus recommended 
that the phase-shifted pulse sequences of Eq. [41] or Eq. [42] be used in combina- 
tion with randomized T, values within each sequence oft 1 values. When quadrature 
phase detection is employed, the performance of additional experiments with 
systematic phase cycling is recommended. 

The experiments shown in Figs. 6 and 9 were performed on a homemade 90-MHz 
spectrometer equipped with a Bruker 1%in. magnet and with a Varian 620/L-100 
computer and a Diablo disk. A general 2D program slightly modified for the 
particular experiment was employed. 

V. CONCLUSIONS 

In most 2D cross-relaxation and chemical exchange studies coupled spin systems 
must be investigated. In such systems, coherent and incoherent exchange proc- 
esses occur at the same time. It has been found that in many cases the coherent 
exchange processes leading to the J cross-peaks dominate. Although J cross- 
peaks contain valuable information on the coupled spin system, they must be 
suppressed for clarity of the spectrum. Several techniques suitable for this purpose 
have been described in this paper. The information contained in the J cross-peaks 
can be obtained more conveniently from a separate 2D-correlated spectrum (5,9). 

For a complete 2D study of a system involving cross-relaxation or chemical 
exchange it is therefore necessary to record two 2D spectra, a 2D exchange spec- 
trum with J effects eliminated for the elucidation of the exchange processes, 
and a 2D-correlated spectrum for the assignment of the coupling network. This pair 
of experiments forms a powerful tool, in particular for the study of biological 
macromolecules. 
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An instructive example demonstrating the importance of J cross-peaks in 2D 
NOE spectra of proteins for short mixing times will be published elsewhere (24). 
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