
10 Liquid-state NMR

The first implementations of a quantum computers
used nuclear spins as qubits. The corresponding ex-
perimental technique is known as nuclear magnetic
resonance (NMR). It can be considered the proto-
typical implementation, in the sense that the qubits
are actual 2-level systems that are relatively well iso-
lated from other degrees of freedom. On the other
hand, it represents a radical departure from most
other concepts: While one usually thinks of quantum
registers as individual systems (and many projects
try to implement such systems), NMR represents
qubits by some 1020 identical copies of a nuclear
spin in a suitable molecule. One therefore refers to
this type of quantum information processing as “en-
semble quantum computing” .

As discussed before, spins S = 1/2 are the only
physical systems that implement directly the 2-
dimensional Hilbert space of a qubit. Furthermore,
single-qubit logical operations are best understood
as rotations of a spin 1/2 around a magnetic field.
The dynamics of a system of spins 1/2 is thus a sim-
ple, idealized representation of any quantum infor-
mation processor. We therefore describe its opera-
tion here in some detail.

10.1 Basics of NMR

Nuclear magnetic resonance is mainly a spectro-
scopic tool that is used for the analysis of almost any
type of molecule, condensed matter or gases in var-
ious environments. In the form of MRI (magnetic
resonance imaging) it also has become an important
tool in clinical medicine. We start with a review of
the basics of NMR spectroscopy before we discuss
how this technique can be used for quantum com-
puting.

10.1.1 System and interactions

Magnetic resonance is based on the spin degrees of
freedom of electronic and nuclear spins. The spin of
charged (and some neutral composite) particles has
a magnetic dipole moment associated with it; if such
particles are placed in a magnetic field, the energy of
these magnetic dipoles depends on their orientation
with respect to the field.
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Figure 10.1: Basics of nuclear magnetic resonance
(NMR). Left: Zeeman splitting of spin
states in a magnetic field. Right: The
basic experimental setup consists of a
static magnetic field, a radio frequency
(RF) generator that creates an alternat-
ing magnetic field perpendicular to the
static field, and a detector that measures
the voltage induced in the coil by the
precessing magnetization.

As shown in Figure 10.1, the magnetic field lifts the
degeneracy of the spin states. This effect, which is
known as the Zeeman effect, is proportional to the
strength of the magnetic field. For a spin S = 1/2, the
splitting of the two energy levels is proportional to
the magnetic field strength. Quantum mechanically,
it is described by the Hamiltonian

Hz = �g

~S ·~B,

where g is the gyromagnetic ratio of spin S. The
usual convention is to orient the z-axis along the
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static magnetic field. The Hamiltonian then becomes

Hz = �g SzB0 = �wLSz, (10.1)

where B0 is the strength of the magnetic field and
wL = gB0 the Larmor frequency. For most NMR
quantum information processing experiments, we
can restrict the discussion to spins S = 1/2, for
which the Zeeman interaction is the only coupling
to external fields.

In magnetic resonance experiments, one uses alter-
nating magnetic fields, which couple to the same
magnetic dipole moments, to resonantly excite tran-
sitions between these spin states. The resonance
condition is that the frequency w of these alternating
fields fulfills the Bohr condition h̄w = DE , where
DE is the separation of the two energy levels (= h̄wL
here). The relevant frequency is in the radio fre-
quency (RF) range for nuclear spins (10–1000 MHz
in fields of 1–25 T).

The equation of motion for the spin can be de-
rived classically, by considering the magnetic mo-
ment ~µ = g

~S in a magnetic field ~B0. The interaction
between the magnetic field and the magnetic dipole
generates a torque

~T =~
µ ⇥~B0 = g

~S ⇥~B0.

~T

~B

~µ

d~S

dt

~S

Figure 10.2: Orientation of spin, magnetic field, and
the torque generated by the interaction
between magnetic moment and mag-
netic field.

While a torque acting on a classical magnetic mo-
ment would rotate it towards the direction of the

magnetic field, the spin is also an angular momen-
tum, and the torque is equal to the time derivative of
the angular momentum,

d~S
dt

= ~T .

The resulting equation of motion is thus

~̇
µ = g

~
µ ⇥~B0 = ~

µ ⇥~
w0.

Since the time derivative is perpendicular to the di-
rection of the spin and to the magnetic field, the re-
sulting motion is a precession around the magnetic
field, rather than a rotation towards the magnetic
field.

The same result can also be derived quantum me-
chanically, from the equation of motion (4.46). Us-
ing the commutation relations for angular momen-
tum, the equation of motion becomes

d
dt

hSxi = �wLhSyi (10.2)

d
dt

hSyi = wLhSxi

d
dt

hSzi = 0.

! Problem 1
The resulting evolution of the spin is a precession
around the direction of the magnetic field at the Lar-
mor frequency.

hSxi(t) = Sxy(0)cos(wLt �f)

hSyi(t) = Sxy(0)sin(wLt �f)

hSzi(t) = Sz(0), (10.3)

where Sxy(0) is the amplitude of the transverse mag-
netization and f its phase, i.e., the angle from the
x-axis at t = 0 (see Fig. 4.1).

As shown in Figure 10.3, this evolution corresponds
to a precession around the z-axis, i.e., around the
magnetic field. Equation (10.2) is called the Bloch
equation, after one of the discoverers of NMR, who
also wrote the theory for it [162]. It can also be de-
rived classically and has applications to many two-
level systems besides NMR [35]. It also can be used
as the equation of motion of a qubit, no matter what
the physical basis is.
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10 Liquid-state NMR

Figure 10.3: Larmor precession of spins in a mag-
netic field.

10.1.2 Radio frequency field

To excite transitions between the different spin states
and implement quantum gate operations, one applies
a RF magnetic field. It is generated by a current run-
ning through a coil that is wound around the sample,
as shown in Figure 10.4.

I(ωrf)

B0

Figure 10.4: An alternating current through a coil
generates an RF field perpendicular to
the static magnetic field.

The generated RF field is

~Br f (t) = 2B1 cos(wt)

0@ 1
0
0

1A ,

where we have chosen the x-axis along the axis of
the coil.

This linearly oscillating magnetic field is best de-
scribed as a superposition of two fields rotating in
opposite directions.

~Br f (t) = B1

0@ cos(wt)
sin(wt)

0

1A +B1

0@ cos(wt)
�sin(wt)

0

1A .

The first component rotates from x to the y axis
(counterclockwise when viewed from the z-axis), the
second in the opposite direction.

If we combine this magnetic field with ~B0 into a
time-dependent Hamiltonian, we obtain an equation
of motion with time-dependent coefficients, which
cannot be solved analytically. The same holds true
for all qubit systems that are excited by resonantly
oscillating control fields. This problem can be solved
by moving the time-dependence from the control
fields to the coordinate system. For reasons that
will become clear, the associated reference frame is
known as the rotating frame.

10.1.3 Rotating frame

The resulting dynamics are best analyzed in a coor-
dinate system that rotates around the static magnetic
field at the RF frequency. We briefly show here the
transformation to this rotating frame since all quan-
tum computing experiments use the rotating frame
representation, not the laboratory frame. As shown
in Figure 10.5, the two coordinate systems are re-
lated by0@ x

y
z

1Ar

=

0@ cos(wt) sin(wt) 0
�sin(wt) cos(wt) 0

0 0 1

1A0@ x
y
z

1A .

where the vector~r r refers to the rotating coordinate
system, the unlabeled one to the laboratory-fixed
system.

x

y

z

xr ωtωt
yr

Figure 10.5: Rotating and laboratory-fixed coordi-
nate systems.

If we apply this transformation to the RF field, the
two circular components become

~Br
r f = +B1

0@ 1
0
0

1A+ B1

0@ cos(2wt)
�sin(2wt)

0

1A .
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Figure 10.6: Circularly polarized components of the
linearly polarized field in laboratory
frame (left) and rotating frame (right).

Apparently, one of the two components is now
static, while the counter-rotating component rotates
at twice the RF frequency. It turns out that, to an ex-
cellent approximation, it is sufficient to consider the
effect of that component which is static in this coor-
dinate system, while the counter-rotating component
can be neglected [163]. It is therefore a convenient
fiction to assume that the applied RF generates a cir-
cularly polarized RF field, which is static in the ro-
tating frame. The corresponding Hamiltonian is

H r
r f = �w1Sx. (10.4)
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Figure 10.7: Comparison between the exact solution
and the rotating wave approximation.

Under most conditions, this approximation yields an
excellent description of the actual dynamics. Figure
10.7 compares the exact evolution to the result of the
rotating wave approximation. Compared to typical
experimental situations, for this figure the parame-
ters have been chosen to exaggerate the deviations
by several orders of magnitude. The rapid oscilla-
tion occurs at twice the Larmor frequency. In addi-
tion, the frequency is shifted slightly, by 1

4
w

2
1

wL
.

The same reasoning can be used in any type of res-
onant excitation. In the case of optical spectroscopy
(e.g. trapped ion quantum computers), it is known as
the rotating wave approximation.

10.1.4 Equation of motion

So far we have transformed the RF field into the ro-
tating frame. We also need to transform the quan-
tum mechanical equation of motion into this refer-
ence frame. We start by transforming the state vec-
tor, using the unitary operator

U(t) = eiwtSz/h̄,

which defines a rotation around the z-axis. It trans-
forms the laboratory state |yi into the rotating frame
as

|yir = U�1|yi = e�iwtSz/h̄|yi. (10.5)

To transform an operator A into the same basis, we
use

Ar = U�1AU. (10.6)

This is valid for all operators, including the density
operator or the observables Sx, Sy and Sz. The only
exception that needs special attention is the Hamil-
tonian. In this case, the transformation has to fulfill
the additional requirement that the Hamiltonian re-
mains the generator of the time evolution. Since the
transformation U is time-dependent, the new coor-
dinate system is not an inertial frame of reference.
The evolution in this system therefore appears to be
subject to additional ‘virtual forces’ that influence
the time evolution and must be accounted for by the
transformation. This is in close analogy to centrifu-
gal forces or Coriolis forces that appear if the coor-
dinate system rotates with respect to inertial frames
of reference.

Starting with the Schrödinger equation in the labora-
tory frame

h̄
d
dt

|Yi(t) = �iH |Yi(t),

we use eq. (10.5) to substitute

|Yi(t) = U|Yir(t)
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and obtain an equation of motion for |Yir(t):

h̄
d
dt

(U|Yir(t)) = �iH U|Yir(t). (10.7)

The left-hand side can be evaluated with the product-
rule:

d
dt

(U|Yir(t)) = U̇|Yir(t)+U d
dt

|Yir(t)

Inserting this into eq. (10.7), rearranging and multi-
plying with U�1 from the left yields

h̄
d
dt

|Yir(t) = �iU�1H U|Yir(t)� h̄U�1U̇|Yir(t).

The Schrödinger equation in the rotating frame be-
comes therefore

h̄
d
dt

|Yir(t) = �iH r|Yir(t)

with the transformed Hamiltonian

H r = U�1H U� ih̄U�1U̇ (10.8)

! Problem 2
The first term corresponds to the rotation (10.6) of
the operator around the z-axis, as for the other oper-
ators. The second term takes into account that the ro-
tating coordinate system is not an inertial reference
frame, since the rotation is an accelerated motion.
Like centrifugal forces, it corrects the equation of
motion for the corresponding virtual force. Evaluat-
ing this term, we find

�ih̄U�1U̇ = �ih̄ · iw
h̄

Sz = wSz.

This represents an additional term to the Zeeman op-
erator (10.1). Combining it with the driving Hamil-
tonian (10.4), we obtain the rotating frame Hamilto-
nian

H r = �(wL �w)Sz �w1Sx = �DwLSz �w1Sx,

where w1 = gB1 is the strength of the RF field in (an-
gular) frequency units and DwL = wL �w is the static
magnetic field (also in frequency units), reduced by
the frequency of the applied field.

As shown in Figure 10.8, the total effective field in
the rotating frame can be represented by the vector

~
weff = (w1,0,DwL).

The angle q between ~
weff and the z-axis is given by

tanq = w1/DwL.
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Figure 10.8: Effective magnetic field in the rotating
coordinate system.

10.1.5 Evolution

The resulting evolution of the spins in the rotat-
ing frame is exactly the same as if a (small) static
field were applied in this direction in the laboratory
frame: they undergo a precession around the mag-
netic field ~

we f f .
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Figure 10.9: Spin precession for the cases of free
precession(w1 = 0, left), resonant irra-
diation (DwL = 0, right), and the gen-
eral case (center).

Figure 10.9 shows three specific examples for the
motion of spins in this effective field. In the ab-
sence of RF irradiation (w1 = 0), the effective field
is aligned with the z-axis and the precession is the
same as in the laboratory frame, except that the pre-
cession frequency is reduced by w , the frequency of
the applied RF field. In the case of resonant irradi-
ation (shown on the right), the field along the z-axis
vanishes and the effective field lies along the x-axis.
In the general case b), the effective field lies along a
direction in the xz plane.

So far, we have assumed that the direction of the RF
field coincides with the x-axis in the rotating frame.
This can be changed by shifting the phase of the ap-
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plied rf signal. As a function of this phase, the cou-
pling Hamiltonian becomes

H r
r f = �w1(cosj Sx + sinj Sy)

and the effective field

~
weff =

0@ w1 cosj

w1 sinj

DwL

1A . (10.9)

As a simple example, we consider the case that the
RF is applied on resonance, with j = 0, such that
~
weff = (w1,0,0). If the spin is initially aligned with
the z-axis, it rotates around the x-axis as

r(t) = Sz cos(w1t)+Sy sin(w1t). (10.10)

The RF field thus rotates it to the y-axis and from
there to the negative z-axis. Such a rotation by an
angle w1tp = p , with tp the duration of the pulse,
corresponds to an inversion of the spins. If the field
is left on, the spins continue to precess, returning to
the +z axis, again to the negative and so on. This
process of successive inversions is called Rabi flop-
ping, in reference to Rabi’s molecular beam experi-
ment [164]. The frequency w1 at which this process
occurs is called the Rabi frequency.

The primary use of RF irradiation in NMR quan-
tum computers is to create logical gate operations.
As discussed in Chapter 5, single-qubit gates corre-
spond to rotations of the (pseudo)spins. Pulses of
RF radiation are a convenient means for implement-
ing such rotations around arbitrary axes. According
to eq. (10.9), the rotation axis ~

we f f can therefore be
oriented in any arbitrary direction by adjusting fre-
quency (and thereby DwL) and phase j of the RF
field. The angle of rotation a = wefftp around the
effective field, which is called the flip angle, is given
by the product of the effective field strength weff and
the pulse duration tp.

10.1.6 NMR signals

Most NMR signals are obtained in the time domain,
as the response of the system to an RF pulse. We

assume that the system is initially in thermal equi-
librium which is given by Boltzmann statistics:

req µ exp(� H

kBT
) ⇡ 1� H

kBT
,

where the approximate form, derived for the high-
temperature limit

DE = h̄wL ⌧ kBT

is always valid in liquid state NMR: under typical
experimental conditions, h̄wL

kBT is of the order of 10�5.
We have therefore

req =
1
2

✓
1+

h̄wL

kBT
Sz

◆
.

In the simplest NMR measurement, one applies an
RF pulse that rotates the spins through an angle p

2
into the xy plane. According to (10.10), this yields

r(0+) =
1
2

✓
1+

h̄wL

kBT
Sy

◆
.

After the pulse, the system undergoes Larmor pre-
cession under the Zeeman Hamiltonian

r(t) = e�iH t/h̄
r(0+)eiH t/h̄

=
1
2

✓
1+

h̄wL

kBT
(Sy coswLt �Sx sinwLt)

◆
.

Detection of the signal should not be treated as a
quantum mechanical measurement process. There
is no reduction of a wavefunction, and the system
is virtually unaffected by the measurement. Rather
than projecting onto an eigenstate, one measures the
expectation value of a specific observable as a func-
tion of time, without disturbing the free evolution of
the quantum system. This is of course closely related
to the fact that the system consists of an ensemble of
many spins rather than a single particle. It is thus
more appropriate to use a classical picture for the
detection of the signal.

Figure 10.10 shows how observation of the precess-
ing spins is achieved through the Faraday effect. The
polarized spin ensemble is a macroscopic magneti-
zation; as it precesses, it changes the flux through the
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Figure 10.10: Detection of freely precessing spins
through the Faraday effect.

RF coil, thus inducing a voltage signal proportional
to

s(t) µ d
dt

F(t) µ d
dt Â

i
hSi

xi µ cos(wLt). (10.11)

Damping effects, which are not discussed here,
cause a decay of the signal,

s(t) µ cos(wLt)e�t/T2 .

This signal, which is generated by freely precessing
magnetization that slowly decays is known as free
induction decay (FID).

10.1.7 Resonance lines

For an analysis of the signal one usually considers
not the time domain signal, but its Fourier transform.
For an FID decaying exponentially with time con-
stant T2, the spectrum becomes

s(w) =

r
1

2p

T2

1+(w �wL)2T 2
2

,

i.e., a Lorentzian with a half-width at half height 1
T2

centered at the Larmor frequency wL.

While the frequency-domain signal contains the
same information as the time-domain FID, it is still
very useful to do this transformation. The main ad-
vantage of the Fourier transform is that it allows one
to distinguish different transitions: two distinct tran-
sitions usually have different Larmor frequencies

wi j =
Ei �E j

h̄
.

I = 2� i = 0.3

I = 3� i = 0.7

I = 1� i = 1.0

time
Sum

F

Frequenzfrequency

Figure 10.11: Superposition of 3 time-domain sig-
nals and its Fourier transform.

Here, Ei and E j are the energies of the eigenstates
connected by the transition. The corresponding res-
onance lines are therefore separated in frequency
space, while the time domain signals overlap. As
an example, fig. 10.11 shows 3 FID signals

si j(t) = Ai jeiwi jt

with different amplitudes Ai j and frequencies ni j =
wi j/2p as well as their sum. Clearly, the sum is very
hard to interpret. If the total time domain signal is
Fourier-transformed, the resulting spectrum, shown
in the bottom trace, clearly shows the three different
signal contributions as separate resonance lines.

The amplitude of each resonance line is determined
by the product of a density operator element with
an element of the observable; in the simplest case,
where the nontrivial part of the initial density opera-
tor and the observable are identical,

r(0)� 1
2

1 = A = Sx,

and the amplitudes Ai j of the individual transitions
in the spectrum become

Ai j µ |(Sx)i j|2.

10.1.8 Refocusing

In many NMR experiments, and particularly in
(NMR-) quantum computation, it is necessary to
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eliminate unwanted interactions. This includes un-
wanted environmental perturbations, such as mag-
netic field inhomogeneities, or unwanted terms in the
system Hamiltonian. As an example for the latter,
consider a system of multiple qubits coupled by an
interaction such as a bilinear coupling Si

zSk
z between

qubit i and k. Such couplings are essential for 2-
qubit gate operations, but they are unwanted when
a single-qubit gate is to be generated. The terms
that we consider, are either linear or bilinear terms,
i.e. they contain a single spin operator (e.g. Sx) or a
product of two spin operators acting on two different
spins, such as S1

z S2
z .

Refocusing can eliminate such terms. This is usually
achieved by a sequence of RF pulses that modulates
the evolution in such a way that the total effect of the
interaction on the system vanishes. The first such ex-
periment is the “Hahn-echo” observed in liquid state
NMR by Erwin Hahn [99]. We consider here only
the simplest cases, which must fulfill the two condi-
tions

• The interaction H1 can be inverted by a control
operation, Hc : H1 ! �H1

• The interaction commutes with the static sys-
tem Hamiltonian, [H0,H1] = 0.

π/2 π

τ τ

Time

RF

Ph
as
e

Time

Figure 10.12: Refocusing of magnetic field inhomo-
geneities in a Hahn echo experiment.

Figure 10.12 shows a typical experiment. The ini-
tial p

2 RF pulse converts longitudinal into transverse
magnetization µ Sx that subsequently precesses in

the magnetic field. For a system of uncoupled spins,
the density operator after the RF pulse is

r(t)� 1
2

1 µ e�iH t/h̄SxeiH t/h̄

= Sx cos(DwLt)+Sy sin(DwLt).

As shown in the lower part of figure 10.12, the phase
DwLt (which represents the orientation of the mag-
netization in the xy plane) increases linearly with
time. If two spins experience different magnetic
fields, their precession frequency differs. In the fig-
ure, the blue and red lines indicate the evolution of
the phase of two spins that experience different mag-
netic fields (e.g., due to magnetic field inhomogene-
ity). In the central part of the figure, the blue and
red arrows indicate the orientation of these spins. If
a distribution of such Larmor frequencies is present,
the overall effect will be destructive interference and
a loss of signal, as indicated in the upper part of Fig-
ure 10.12 and discussed in more detail in section 7.2.

To refocus this destructive interference process, one
can apply a second RF pulse. A px pulse, i.e. a ro-
tation around the x-axis by an angle p , leaves the
x-component of the density operator invariant but in-
verts the y-component:

r(t+)� 1
2

1 µ Sx cos(DwLt)�Sy sin(DwLt)

= Sx cos(�DwLt)+Sy sin(�DwLt).

Apparently, the pulse inverts the phase of the xy
magnetization vector, as indicated in the lower part
of Figure 10.12. After the pulse, the spins continue
to precess in the magnetic field. If the Larmor fre-
quency remains constant over time, the total phase
acquired during the time t after the refocusing pulse
is equal to the phase that the spin acquired between
the two pulses, before its phase was inverted. As a
result, the total phase vanishes, independently of the
Larmor frequency of the spin. The destructive in-
terference is then eliminated, and a “spin-echo” is
observed.

In a similar way, unwanted couplings between spins
(qubits) can be eliminated by suitable refocusing se-
quences. In an AX system (see Section 10.2.3, e.g.,)
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the coupling term can be eliminated by applying a
refocusing pulse to one of the spins. For a Hamilto-
nian

HAX = wAAz +wX Xz +dAzXz, (10.12)

the initial condition r(0)� 1
2 1 µ Ax +Xx, and equal

precession periods before and after a p pulse on the
X-spin, the system evolves to

r(2t)� 1
2

1 = U(t)e�ipXx/h̄U(t)(Ax +Xx)U†(t)

·eipXx/h̄U†(t)

= U(t)e�ipXx/h̄U(t)eipXx/h̄(Ax +Xx)

·e�ipXx/h̄U†(t)eipXx/h̄U†(t),

where U(t) := e�iHAX t/h̄ is the time evolution oper-
ator describing the precession. Using

e�ipXx/h̄HAX eipXx/h̄ = wAAz �wX Xz �dAzXz,

we find that the the refocusing pulse eliminates the
effect of the Zeeman term Xz as well as the coupling
term AzXz, but leaves the Zeeman term of the A spin.
Similar refocusing schemes are possible to eliminate
different terms in larger spin systems.

10.2 NMR as a molecular quantum
computer

10.2.1 Spins as qubits

The two quantum states that represent a qubit corre-
spond naturally to the two states of a spin-1/2 – the
only quantum system whose Hilbert space has ex-
actly two states. It is therefore always possible to
use the Feynman–Vernon–Hellwarth picture [35] to
describe the qubit as a virtual spin-1/2. In this chap-
ter, however, the virtual spin is a real nuclear spin of
a molecule in solution: we study NMR systems to
show how quantum computers can be implemented.
It should be realized, however, that the quantum
computers that can be built this way still have very
limited capabilities. They should not be compared to
conventional computers, which have been developed

+ 12

- 12

|0>

|1>

|0>

|1>

^̂0

^̂1

Spin 1/2 QubitQubit

EV

Classical bit

1

0

Figure 10.13: Identification of bits with voltage lev-
els (classical computer, left), quan-
tum mechanical states (generic quan-
tum computer, center), and states of a
spin-1/2 (right).

over half a century, but to early prototypes, whose
development only started twenty years ago.

Using the spins as qubits requires a mapping
of the logical qubit states to the spin states.
As shown in Figure 10.13, the spin states
take over the role of voltage levels in classi-
cal computers. Conventionally, one chooses the
|mS = +1/2i state to represent a logical 0, while the
|mS = �1/2i state represents a logical 1. To con-
struct a quantum register, one needs several distin-
guishable qubits.

Solid-state computer
bit 1 bit 2 bit 3

separate leads

space

Liquid-state NMR quantum computer

qubit 1 qubit 2 qubit 3

“monochromatic” 
excitation

frequency

Figure 10.14: Addressing of qubits in NMR quan-
tum computers vs. solid state com-
puters.

Every computer using the network architecture must
be able to selectively address individual bits or
qubits. As indicated in Figure 10.14, conventional
electronic computers (e.g. Si-based) use wires for
this purpose. In liquid state NMR quantum com-
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puters, the qubits are nuclear spins of freely floating
molecules; clearly it is not feasible to use wires for
addressing in this case. Nevertheless, it is possible to
address qubits selectively. Since the qubit gates are
applied with resonant RF fields, they are only effec-
tive when the RF frequency is close to the Larmor
frequency of the spin.

weak pulse

Nonselective excitation

Selective 
excitation

Qubit a Qubit b

ωa ωb

Figure 10.15: Left: qubits with different resonance
frequencies. Right: Selective vs. non-
selective excitation.

As shown in Fig. 10.15, spins whose Larmor fre-
quency differs from the frequency of the RF pulse
are not affected by the pulse to a first approximation,
provided the frequency separation Dw0 = |wa � wb|
is larger than the Rabi frequency w1 of the excitation
pulse. The width of the affected frequency range is
therefore inversely proportional to the duration of the
RF pulse.

For nuclear spins of different isotopes, this condition
can be readily fulfilled. Typical resonance frequen-
cies for typical nuclear spin qubits are, in a field of
B0 = 14 T:

Isotope 1H 13C 19F
w0/2p [MHz] 600 151 565

The frequency differences are this in the MHz range
while typical Rabi frequencies are of the order of
w1 ⇡ 10 kHz, so the condition Dw0 � w1 is always
fulfilled if the qubits are associated with different nu-
clear spin species.

10.2.2 Chemical shift

Since the number of nuclear isotopes is limited and
the number of suitable nuclear isotopes is very lim-
ited, it is desirable to have other mechanisms for

distinguishing the qubits. The easiest possibility is
the chemical shift. The nuclear Larmor frequency is
wL = gB0. The gyromagnetic ratio g is the same for
every spin of a given isotope. However, the magnetic
field B0 can differ, since it corresponds not to the ex-
ternally applied field, but to the local field at the site
of the nucleus.

H
Sample

external magnetic 
field

magnetization = 
additional field

ωL = γ B0

Figure 10.16: Chemical shift: local magnetic fields
shift the Larmor frequency.

The magnetic field strength at the site of the nucleus
differs in general from the externally applied mag-
netic field: the electron system, in which the nucleus
is embedded, has a non-vanishing magnetic suscep-
tibility. These shifts depend therefore on the elec-
tronic structure and are generally known as “chem-
ical shift”. The Hamiltonian that describes such a
system of qubits can be written as

HZ = �Â
i

wi Si
z,

where the index i runs over all spins (qubits). These
frequency shifts are proportional to the magnetic
field strength and can be used to distinguish differ-
ent qubits.

Figure 10.17 shows a typical example. The molecule
ethylbenzene is a standard used for calibrating NMR
spectrometers. It contains three types of protons,
which cover a chemical shift range of about 6 ppm.
In general, the available chemical shift range de-
pends on the isotope considered. In the case of pro-
tons (1H), the range |wi � w j|/wi is of the order of
10 ppm. For 13C, it is about 200 ppm, and similar
for 15N. For a typical 1H NMR frequency, the avail-
able frequency range is therefore of the order of 6
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12345678

CH2
CH3

aromatic protons CH2 protons
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Figure 10.17: Chemical shift of protons in the NMR
spectrum of ethylbenzene.

kHz, for 13C in the same field 30 kHz. In contrast
to conventional computers, where lithographic pat-
terns localize different bits, this may be considered
a bottom-up approach, where the molecular struc-
ture determines the location of the qubit in frequency
space.

10.2.3 Coupled spin systems

Implementation of quantum algorithms requires
two-qubit gates, which must rely on couplings be-
tween qubits / spins. Such couplings are naturally
present in nuclear spin systems and are exploited
also in NMR spectroscopy.

1H Frequency

2H Frequency

HD molecule

Figure 10.18: Splitting of resonance lines in the HD-
molecules by the coupling between 1H
and D=2H.

Figure 10.18 shows the effect of the coupling on the
spectrum of the HD-molecule, which contains two
different nuclear spin species. The 1H nucleus has
a spin 1/2, while the D=2H nucleus, which contains
one proton as well as one neutron, has spin I = 1.
As a result of the interaction, the 1H spectrum (up-
per trace) splits into three resonance lines, while the

spectrum of the 2H splits into two. As we show be-
low, the number of resonance lines is given my the
multiplicity 2I +1 of the coupling partner.

BB γ B0

ν

( - δ)

negative 
additional 

field
B

γ (B0 + δ)

positive 
additional 

field

Splitting ~ coup-
ling strength

Coupling partner : spin 1/2

smaller splitting 
lower frequency

larger splitting 
higher frequency

Figure 10.19: Coupling between nuclear spins as an
effective field.

The effect of the coupling can qualitatively be un-
derstood in a semiclassical picture, where every spin
generates a small additional field, which is felt by the
coupling partner(s). Its direction depends on the ori-
entation of the spin that generates the field, as shown
in Fig. 10.19. Depending on the sign of the addi-
tional field, it increases or reduces the Zeeman split-
ting of the coupling partner and therefore shifts its
resonance frequency. This shift is proportional to the
magnetic quantum number of the source spin. Ac-
cordingly, every line of the multiplet can be labeled
by the spin state of the source spin.

There are two main types of couplings; the first is
called scalar, indirect, or J-coupling, the second type
is the direct or dipolar coupling. In the case of the
dipolar coupling, the coupling energy can be calcu-
lated from the distance and orientation of the spins:

Edd =
µ0

4pr3
12

µ1µ2(1�3cos2
q).

Here, r12 is the distance between the two nuclei,
µi are their magnetic moments, and q is the ori-
entation angle of the internuclear vector with re-
spect to the direction of the external magnetic field.
The isotropic average of the Legendre polynomial
P2(q) = 1 � 3cos2

q vanishes. In isotropic liquids,
where molecules rotate freely, these interactions are
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therefore averaged to zero and do not contribute to
the evolution of the spins (but to their relaxation).

D
H(b)

(b)

Figure 10.20: J-coupling between the nuclear spins
of the HD-molecule.

The isotropic coupling (J-coupling), however, does
not depend on the molecular orientation and is there-
fore not affected by the molecular motion. As a re-
sult, only the scalar J-couplings are observed in the
spectrum. These couplings are mediated by the elec-
trons in the chemical bonds and are therefore often
called indirect couplings. Fig. 10.20 illustrates the
underlying mechanism: the hyperfine interaction be-
tween the nuclear spins and the electron spins of the
chemical bonds lifts the degneracy of the two elec-
tronic spin states and leads to a (very small!) polar-
isation of the electron spins in that bond, with the
energetically favored orientation having a slightly
higher density nead the nucleus. Accordingly, the
opposite spin state has a slightly higher density at
the other nucleus. The hyperfine interaction there-
fore lowers the energy of the opposite nuclear spin
state in the second nucleus. The energy of the two
nuclear spins therefore includes a term

EJ = �J~µ1 ·~µ2.

In both cases, the coupling between two spins can
be understood as a small additional magnetic field
generated by spin A and acting on spin X , as well as
in the opposite direction. We consider here only the
simplest case (which is most useful for NMR quan-
tum computing), where the interaction can be written
as

HAX = dAzXz,

where A and X are the two spins and d the coupling
constant. The total Hamiltonian is then

H = Hz +HAX = �wAAz �wX Xz +dAzXz

AX

ν

X-spectrum A-spectrum

Energy levels Spectrum

Figure 10.21: Energy levels and spectrum of a sys-
tem of two qubits A and X . The dashed
horizontal lines indicate the energy
levels of the Zeeman Hamiltonian (no
coupling), the solid lines the energies
of the full Hamiltonian.

Figure 10.21 shows the energy levels and the spec-
trum of such a two-spin system. The dashed hori-
zontal lines in the left-hand part indicate the energy
levels of the Zeeman Hamiltonian alone (no cou-
pling), the solid lines represent the energies of the
full Hamiltonian. The coupling shifts the states with
parallel orientation of the two spins upwards (for a
positive sign of the coupling constant d), the states
with antiparallel orientation downwards.

As discussed in section 10.1.6, NMR signals are
generated by precessing magnetization. Observable
transitions must therefore have non-vanishing matrix
elements of the transverse spin operators Sx and Sy.
These allowed transitions correspond to the flip of
a single spin by one quantum. In the present spin
system, such transitions are those between the states
""$"#, ""$#", "#$##, #"$##. The transition
frequencies are

w12 = w""$"# = wX �d/2;
w13 = w""$#" = wA �d/2;
w24 = w"#$## = wA +d/2;
w34 = w#"$## = wX +d/2;

The spectrum consists of four lines, each of which is
associated with a transition of one spin and labeled
by the (invariant) state of the second spin.
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10.2.4 Pseudo / effective pure states

Before NMR quantum computing was demon-
strated, all algorithms for quantum computers as-
sumed that quantum computers use individual quan-
tum systems, which are initially prepared in a spe-
cific quantum state. Unfortunately, detecting indi-
vidual spins is extremely difficult and has only been
achieved in a few specific systems [165, 166, 167,
168, 169, 170]. In most cases, signals can be de-
tected only from macroscopic ensembles of spins,
containing some 1020 spins. These spins are not
in identical quantum mechanical states and therefore
cannot be described by a pure state. For the descrip-
tion of the mixed states, one has to use a density op-
erator.

Many quantum algorithms require pure quantum
states for their implementation and can therefore not
be applied to NMR systems in thermal equilibrium.
Nevertheless, mixed states can be made to mimic
pure states and therefore allow the implementation
of these algorithms. For this purpose, the target sys-
tem has to be prepared in an initial state that can be
written as the sum of the unit operator and an opera-
tor representing a pure state:

r pp µ b1+ar p,

where r pp is referred to as a “pseudo-pure” state, or
“effective pure state”, while r p is a pure state. The
density operator component proportional to the unity
operator has vanishing magnetization and therefore
does not contribute to the signal. In addition, it com-
mutes with the Hamiltonian and therefore does not
undergo time evolution. Accordingly, the behavior
of such a system is completely determined by the
second component and therefore is exactly equal to
that of a pure state. The coefficient a is largely de-
termined by the polarization of the spin system.

As shown in Fig. 10.22, a single spin is always in a
pseudo-pure state (compare (4.37)).

In multi-qubit spin systems, however, the thermal
equilibrium states are not even pseudo-pure. Figure
10.23 illustrates this for a 2-qubit system. Unitary
operations cannot be used to bring such a system

thermal state

= +

completely mixed population difference

Figure 10.22: A thermal state of a single qubit is a
pseudo-pure state.

ρeq

=

11

+2 qubits

Figure 10.23: A thermal state of a 2-qubit system.

into a pseudo-pure state. Instead one has to aver-
age over a number of different mixed states to make
the pseudo-pure state.

There are a number of procedures for implement-
ing such an averaging scheme, which are referred to
as “spatial labeling” [13], “temporal labeling”[171]
and “logical labeling” [172]. Temporal labeling is
perhaps easiest to explain, using the example of two
coupled spins. In equilibrium, the populations of the
four states are

"": 1/4+ e "#,#": 1/4 ##: 1/4� e,

where e ⇡ h̄wL/kBT ⇡ 10�5 is determined by the ra-
tion of the Zeeman energy to the thermal energy of
the system.

To obtain a pseudo-pure state, one can equalize the
populations of three levels (e.g., "#,#",##) by cycli-
cally permuting them and adding the results of three
experiments with different initial conditions. The
time-averaged populations would then be

1
4

0BB@
1
1
1
1

1CCA+ e

0BB@
1

�1
3

�1
3

�1
3

1CCA

= (
1
4

� e

3
)

0BB@
1
1
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The corresponding averaged density operator corre-
sponds to the sum of the unit operator ( = the totally
mixed state) and a pure state.

The main disadvantage of this procedure is that the
averaging process reduces the polarization and there-
fore the signal amplitude. In the case of spatial la-
beling, one turns the population differences of states
2, 3, 4 into transverse magnetization, which is de-
stroyed by pulsed field gradients. It was soon real-
ized [173] that this loss of polarization, which in-
creases exponentially with the number of spins in
the quantum register, severely restricts the useful-
ness of liquid-state NMR quantum computing. Sim-
ilarly, the number of operations required increases
exponentially with the number of qubits. This can be
reduced to polynomial overhead by logical labeling
[172], which uses additional (ancilla) spins to create
pure states for specific ancilla spin configurations.
For the related techniques POPS [174] or SALLT
[175], the overhead is independent of the number of
qubits.

While this loss of signal is a severe problem for
scalability, it is not always necessary to prepare
a pseudo-pure state. Many quantum algorithms
can also be applied to mixed states, and some of
these mixed state algorithms actually run faster than
the corresponding pure state algorithms [176, 177].
These algorithms, which can provide an exponential
speedup even over optimal quantum algorithms, use
a combination of quantum parallelism with classi-
cal parallelism: the ensemble of nuclear spins corre-
sponds then to a large number of quantum computers
running in parallel.

10.2.5 Single-qubit gates

Single-qubit gates are implemented by RF pulses. In
the rotating frame, an RF pulse can be represented
by its propagator

U = e�iH t/h̄ = ei~we f f ·~St/h̄,

where H is the Hamiltonian during the pulse and t

the duration of the pulse. Depending on the phase j

of the RF field, the propagator for a resonant pulse is

e� i
h̄ b (Sx cosj+Sy sinj)

�eff

Figure 10.24: Single-qubit gate implemented as a ro-
tation around the effective field we f f .

The flip angle is b = w1t , where w1 is the ampli-
tude of the RF field (the Rabi frequency) and t the
duration of the pulse.

As discussed in section 2.2.5, the shortest possible
duration of a single-qubit gate is given by the energy
level splitting. In the case of spins, the energy level
splitting is given by the strength w1 of the interaction
with the RF field and the gate duration t is inversely
proportional to the interaction strength, t = b/w1,
where b is the rotation angle of the gate. In sec-
tion 10.2.1, we showed that addressing of individ-
ual qubits requires that the strength of the rf field is
weaker than the difference between their resonance
frequencies. Accordingly, the duration of single-
qubit gates will always be longer than the inverse of
the frequency difference between the qubits.

Combining two such generators (rotations) with dif-
ferent axes, it is possible to implement any SU(2)
operation. An important example is the set of rota-
tions around the z-axis, which cannot be generated
by RF pulses directly. They can, however, be real-
ized by combining three rotations around axes in the
xy plane:

e�ifSz/h̄ =

✓
e�if/2

eif/2

◆
= e�i p

2 Sx/h̄e�ifSy/h̄ei p

2 Sx/h̄

= e�i p

2 Sy/h̄eifSx/h̄ei p

2 Sy/h̄. (10.13)

We now consider the most important single-qubit
gates. Using the conventional choice of relative
phases between states, the NOT gate may be imple-
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mented, up to an irrelevant overall phase, by

NOT : e�ipSx/h̄ =

✓
�i

�i

◆
= e�i p

2

✓
1

1

◆
.

This implementation of NOT thus differs from the
usual representation by an overall phase of �p

2 .
Since such overall phases do not correspond to ob-
servable quantities, we will not consider them here
and regard all implementations that differ by such a
phase factor as equivalent.

One might first think that any 180 degree pulse,
which inverts the two states |0i and |1i should be
an implementation of NOT. However, looking at the
propagator for a py pulse,

e�ipSy/h̄ =

✓
0 �1
1 0

◆
,

one sees that this differs from the NOT in terms of
the relative phase that it applies to the two states.

The Hadamard gate

H =
1p
2

✓
1 1
1 �1

◆
can also be implemented by an RF pulse

ip
2

✓
1 1
1 �1

◆
= e�i( pp

2
)(Sx+Sz)/h̄

Physically this transformation can be achieved in a
number of different ways: either by applying an off-
resonant RF pulse with DwL = w1, or by a sequence
of RF pulses along the y, x and �y axes:

H = ei p

4 Sy/h̄e�ipSx/h̄e�i p

4 Sy/h̄ (10.14)
= e�i p

4 Sy/h̄e�ipSz/h̄ei p

4 Sy/h̄

= e�ipSz/h̄ei p

2 Sy/h̄.

The three-pulse version is also interesting: as in the
case of the composite z-rotation (10.13), it can be
understood as a “rotated rotation”. The central pulse
executes the desired p rotation around an axis in the
xy plane. The first and last pulses then rotate the axis

from the xy plane into the xz plane. This scheme
is experimentally easier to implement since it only
requires resonant pulses.

The last version in eq. (10.14) is the shortest: a
�

p

2
�

y
pulse is followed by a pz rotation, which can be im-
plemented, e.g., by a phase shift. If the z-rotation is
omitted, this gate is known as the pseudo-Hadamard
gate

h =
1p
2

✓
1 1

�1 1

◆
= ei p

2 Sy/h̄,

which can replace the Hadamard gate in many cases.
It is not it’s own inverse, but

h�1 =
1p
2

✓
1 �1
1 1

◆
= e�i p

2 Sy/h̄.

They correspond to ±p

2 rotations around the y axis.

! Problem 3

10.2.6 Two-qubit gates

Two-qubit gates require couplings between the spins
to apply transformations to one spin conditional on
the state of the other spin. There are two different
ways of implementing such gates. One may be re-
ferred to as “soft pulses”, the other as “pulses plus
free precession”. The first uses the fact that weak RF
fields affect only transitions whose resonance fre-
quency is close to the RF frequency. As we dis-
cussed in Section 10.2.3, the transitions of a nuclear
spin that is coupled to another spin can be labeled by
the state of the coupling partner. A weak RF field
whose frequency matches the frequency of one res-
onance of spin A (e.g.) therefore excites spin A on
the condition that spin X is in the |1i state – a CNOT
gate.

CNOT =

0BB@
1

1
1

1

1CCA .

This variation is conceptually simple since it can be
described in terms of two-level systems, and it can
be extended to more complicated spin systems. The
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condition that the pulse must be selective requires
that the RF field w1 be weak compared to the cou-
pling d, w1 ⌧ d and therefore that the gate duration
t be long compared to the inverse coupling strength,
td � 1. As a result, this type of gate operation is
more susceptible to decoherence.

CNOT

invert

Figure 10.25: CNOT gate implemented by a selec-
tive pulse on the ##$#" transition.

Figure 10.25 shows, as an example, how a CNOT
gate can be implemented by a selective p-pulse ap-
plied to the ##$#" transition, i.e. the 11 $ 10 tran-
sition.

SW
AP

1)

2) 3)

1)

2)

3)

Figure 10.26: SWAP gate implemented by a se-
quence of three selective p-pulses.

Figure 10.26 shows a second example. In this case,
the SWAP operation "#$#" cannot be implemented
directly, since the matrix element of the magnetic
dipole operator vanishes for the transition "#$#". It
can be replaced by a sequence of three p-rotations,
e.g. the combination given in fig. 10.26.

10.2.7 Two-qubit gates with nonselective
pulses

The second approach consists of a combination of
single qubit gates with periods of free precession.
We consider a spin A coupled to a control spin X by
the interaction dAzXz. The corresponding Hamilto-
nian (10.12) yields a spectrum with two resonance
lines in the A-spectrum, which can be labeled by the
states | "i and | #i of the X spin. We will assume
that pulses can be applied to the A and X spin sep-
arately – a condition which must be satisfied for the
one-qubit gates. In contrast to the first implementa-
tion, however, the pulses used here always act on all
transitions of a given spin, independent of the state
of its coupling partner(s), as in any single-qubit gate.

Starting from the state |00i = |X =",A ="i, an
e�i p

2 Ay/h̄ RF pulse creates a superposition state

|Y(0)i =
1p
2
[|0i⌦ (|0i+ |1i)].

Free precession converts it to

|Y(t)i =
1p
2
[|0i⌦ (|0ie�ih̄dt/4 + |1ieih̄dt/4)],

where we use a rotating frame that is resonant with
the Zeeman frequency for the A and (independently)
for the X spin.

After a time t = p

dh̄ , the phase factor is e±ip/4 = (1±
i)/

p
2 and the system has reached the state

|Y(
p

dh̄
)i =

1
2
[|0i⌦ ((1� i)|0i+(1+ i)|1i)].

=
1� i

2
[|0i⌦ (|0i+ i|1i)],

which corresponds to an p/2 rotation of the A-spin
around the z-axis. An e�i p

2 Ax/h̄ pulse applied at
this time returns the system to its original state |00i
(apart from an overall phase factor).

As shown in fig. 10.27, this can be readily followed
in terms of a vector model. The initial y-pulse turns
the spin from the z-axis to the x-axis. The red vector,
which corresponds to the control qubit being in the
"i state, then precesses by 90 degrees to the y-axis,
and the subsequent x-pulse flips it back to the z-axis.
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�A(0) = Ax

�A(t; X =#)

�A(t; X =")

Figure 10.27: Evolution of nuclear spin coherence
under a coupling to another spin-1/2.

If we apply the same sequence of pulses to the state
|10i = |X =#,A ="i, the free precession occurs with
opposite sign

|Y(t)i =
1p
2
[|1i⌦ (|0ieih̄dt/4 + |1ie�ih̄dt/4)],

as shown by the second vector in fig. 10.27. Accord-
ingly, the second pulse rotates the spin to the nega-
tive, rather than the positive z-axis. Clearly, this cor-
responds to an inversion conditioned on the control
qubit being in the |1i state.

The free precession period under the Hamiltonian

HAX =
d
h̄

AzXz

implements the transformation ei(pAzXz)/h̄2
. Together

with the two pulses, this implements a CNOT gate:

ei p

2 Ay/h̄e�i( p

2 Xz+
p

2 Az�pAzXz/h̄)/h̄e�i p

2 Ay/h̄

= e�i( p

2 Xz+
p

2 Ax�pAxXz/h̄)/h̄

= (1+ i)

0BB@
1

1
1

1

1CCA .

The additional terms of Xz and Az are for normal-
ization of the relative phases. They can be imple-
mented as composite z-pulses [178] or by an appro-
priate choice of the reference frequency.

Three qubit gates like the Toffoli gate can be con-
structed in the same way as two-qubit gates - either
by selective pulses or by a combination of single-
qubit gates and free precession periods. Formally,
a three-qubit operation involves three-particle inter-
actions, corresponding to Hamiltonian terms H3 =

π/2 pulse π pulse

61 2 2 6162 6 2 62 62 62 6261 6

y y -x -x

Time

Figure 10.28: Pulse sequence for implementing a
Toffoli gate.

ABC, where A, B and C are single-qubit operators of
the three involved qubits. Such interactions do not
exist on the fundamental level, but they can be cre-
ated artificially, by using transformations like

e�ibByCze�iaAzBxeibByCz = e�igAzBzCz .

Here, A
a

, B
b

, and C
g

refer to the three qubits and
the three factors can be generated in the same way
as the CNOT operation discussed above, by combin-
ing free precession periods under the effect of a two-
qubit coupling Hamiltonian with single-qubit gates.
Each factor corresponds to a 2-qubit gate operation.

Figure 10.28 shows a possible pulse sequence for
implementing the Toffoli gate with hard pulses. Al-
ternatively, three- or N-spin gates may be generated
using selective pulses [179, 180, 181]. The Toffoli
gate, e.g., can be implemented by a selective inver-
sion pulse applied to the transition |110i $ |111i.

10.2.8 Qubit readout

As discussed in Section 10.1.6, detection in mag-
netic resonance is best described in a classical pic-
ture: the transverse components of the spin generate
a macroscopic magnetization that precesses around
the static magnetic field. Obviously such a detec-
tion scheme is not compatible with the usual de-
scription of a quantum mechanical measurement,
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which involves the collapse of a wavefunction. In-
stead, one observes the system continuously, with-
out significantly affecting its behavior. This differ-
ence is closely related to the fact that the system is
an ensemble, rather than the usually assumed single-
particle system. In addition, the observed quantity
is not the population of some state, i.e., hyk|yki, but
rather the evolution of a coherence, i.e., |y jihyk|(t),
where |y j,ki are eigenstates of the Zeeman Hamilto-
nian.

According to equation (10.11), the signal contribu-
tion of a specific coherence is proportional to the cor-
responding matrix element of the total spin operator
Âi Si

y. This matrix element vanishes unless exactly
one of the spins changes its magnetic quantum num-
ber, i.e., unless the transition occurs between two
states

|ii = |m0,m1, ...mNi

and

| f i = |m00,m10, ...mN0i

with m j0 = m j for all but one j.

The observed signal is the sum over the contributions
of the individual spins. A measurement at a single
instant in time therefore does not determine the val-
ues of the individual qubits, but only the sum over
all qubits. However, the possibility for continuous
measurements makes it possible to distinguish the
contributions from the individual qubits, since they
evolve at different frequencies. As we discussed in
Section 10.2.1, all spins in an NMR qubit register
must have different Larmor frequencies to allow ad-
dressability for logical operations. This condition
also implies that their precession frequencies dur-
ing detection are different. As discussed in section
10.1.7, Fourier transformation of the FID from such
a system therefore separates the contributions from
different qubits in frequency space.

Measuring the FID is a straightforward way to mea-
sure the expectation value of transverse spin compo-
nents Sx and Sy. When a quantum algorithm requires
the measurement of populations, it can be trivially
modified to allow for implementation on an NMR

quantum computer. One adds an RF pulse that con-
verts the populations into transverse coherence and
again measures the FID of the system.

|1>
x

y

z

x
y

z

|0>

Apply (-x)-rotation

Iy

Frequency

Figure 10.29: Readout of populations with the help
of an RF pulse for the two basis states.
The vector diagram shows how the
spin is rotated by the RF pulse and
the (single line) spectra show how the
resulting amplitudes identify the qubit
state.

Figure 10.29 shows, as an example, the signal that
one observes from a single qubit if it is in one of the
two eigenstates before the RF pulse is applied. If it
is in the ground state, which corresponds to the spin
pointing along the direction of the magnetic field, the
RF pulse rotates it to the positive y-axis. Since Sy
is the observable, we expect a positive signal at the
Larmor frequency of this qubit. If the spin is in the
logical |1i state instead, it always points in the oppo-
site direction and the signal becomes negative.

There are cases in quantum computation, where the
readout process hinges on the collapse of a wave-
function. For those cases, which include Shor’s al-
gorithm, the algorithm must be modified when it is
applied to an NMR system. The non-existence of a
collapse is handled by appending an additional step,
which is polynomial in the number of bits and al-
lows one to obtain the result from ensemble mea-
surements [12, 182].
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10.2.9 Readout in multi-qubit systems

As the number of qubits increases, the number of
resonance lines in the associated NMR spectra also
increases. While the addressability criterion man-
dates an increase in the number of lines that is pro-
portional to the number of qubits, the couplings be-
tween the spins (which are needed for two-qubit
gates) increase the number of lines much more
rapidly. Every coupling partner doubles the num-
ber of resonance lines. If all N qubits are coupled to
all other qubits (which is usually not the case), each
qubit gives rise to 2N�1 resonance lines, correspond-
ing to the 2N�1 states of its coupling partners and the
total number of lines is nL = N2N�1.

1 qubit

2 qubits

3 qubits

Frequency

Figure 10.30: Increase in the number of resonance
lines in N spin systems.

Figure 10.30 shows the number of resonance lines
for N = 1, 2, and 3 qubits. In most real systems,
not all couplings are large enough to be measurable,
resulting in a smaller number of lines.

This exponential increase in the number of lines in
a finite frequency bandwidth, limits the number of
useful qubits. However, it does have the advantage
that the spectrum contains much more information
about the state of the quantum mechanical system
than the simple readout of individual qubits. Every
group of lines associated with transitions of qubit
| ji provides information about the state of the cor-
responding qubit but, in addition, it can also yield
information about the states of the other qubits. To
illustrate this, we consider the two-qubit system of
Section 10.2.3 and assume that we are interested in
the readout of the states

|00i, |01i, |10i, |11i.

ρ before pulse

|00>

|01>

|10>

|11>

A X

A Spectrum
(selective pulse)

X Spectrum
(selective pulse)

AX Spectrum
(nonselective pulse)

|0> |1> |0> |1> A X

Figure 10.31: Signals in NMR readout for different
spin states.

Figure 10.31 shows how these states can be distin-
guished by applying an RF pulse, measuring the FID
and calculating its Fourier transform. If we apply the
pulse only to the A or X spin, we measure only a par-
tial spectrum. Each partial spectrum consists of two
resonance lines that can be labeled with the quantum
state of the coupling partner. If the coupling partner
X is in state |0i, e.g., the spectrum of the A spin only
shows the single resonance line associated with this
state. Starting from the state |00i, e.g., and applying
a p/2 rotation to the A-spin, we obtain the state

Y00+ =
1p
2
(|0i+ |1i)⌦ |0i =

1p
2
(|00i+ |10i),

which evolves with the single frequency (E10 �
E00)/h̄ and therefore generates a single resonance
line in the spectrum, as shown in the upper left of fig.
10.31. Even the partial spectrum of either spin pro-
vides therefore a clear distinction between all four
possible cases.

It is also possible to apply an RF pulse that excites
both spins simultaneously. The resulting nonselec-
tive spectrum, shown in the last column, again al-
lows for a clear distinction between the four cases.

This scheme can easily be extended to more spins;
examples are given, e.g., in [183]. In general, a spec-
trum of a weakly coupled N-spin system contains
N2N�1 resonance lines. Taking into account that the
usual NMR experiments measure not only Âi Si

y, but
also Âi Si

x, this number doubles to N2N . The num-
ber of resonance lines is thus even larger than 2N ,
the total number of coefficients that describe a pure
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state of N qubits. This shows that the resonance line
amplitudes are not independent of each other.

10.2.10 DiVincenzo’s criteria

DiVincenzo[11] listed five criteria that implementa-
tions of quantum computers should fulfill to be con-
sidered “useful”. We summarize here to what degree
liquid state NMR fulfills these criteria:

1. Well-defined qubits.

The usual implementations use nuclear spins S =
1/2 and identify |0i = | "i and |1i = | #i. The qubits
are well characterized in the sense that their energies
are well known and the coupling to external fields
occurs only through the Zeeman interaction. In the
liquid state NMR experiments, logical qubits are not
represented by individual spins, but by collections of
spins of the order of Avogadro’s number. This is in
contrast to the usual assumption of quantum compu-
tation theory, and some consequences of this need to
be addressed in the context of readout and initializa-
tion.

In liquid state NMR, the individual qubits are dis-
tinguishable by their resonance frequency. The res-
onance frequencies of the different spins may be
shifted by chemical shift effects or the qubits may
be represented by different isotopes. The latter is
clearly preferable, since it avoids cross-talk between
qubits. However, since the number of useful isotopes
is limited, assigning different isotopes to different
qubits is clearly not a scalable procedure. When
one uses chemical shift differences, the separation
should be as large as possible to allow for fast oper-
ations of logical gates.

In summary, NMR systems fulfill the “qubit-
identification" requirement quite well, but liquid-
state NMR appears to fail the scalability criterion.

2. Initialization into a well defined state.

In liquid state NMR, initialization is achieved
by relaxation, which provides for an excess of
spins in the ground state. For algorithms de-
signed to work with pure states, this must be
combined with the preparation of a pseudo-pure
state. While these procedures can be used for

small spin systems, they are clearly not scal-
able for larger systems. Furthermore, thermal
initialization is not sufficient for repeated quan-
tum error correction, which will represent an
essential part of scalable quantum computing.

3. Long decoherence times.

The long decoherence time (of the order of a
second) of liquid state NMR is one of its biggest
advantages. However, typical durations of two-
qubit gates are at least several milliseconds, so
the number of gates that can be applied is lim-
ited to approximately 100.

4. A universal set of quantum gates.

At this point, liquid state NMR scores very
well: the implementation of unitary transforma-
tions is well established and rather straightfor-
ward.

5. A qubit-selective readout.

Another strong point, as discussed above. The
differentiation of qubits requires chemical shift
separation, but is much easier to achieve than
the addressing during gating. It is even possi-
ble to read out the full density operator, rather
than only the populations, as in standard quan-
tum computing algorithms.

10.3 NMR Implementation of Shor’s
algorithm

When Peter Shor published his algorithm for factor-
ization in polynomial time (Ref. [9], for details see
Section 8.3), it generated enormous boost to the field
of quantum information processing. Similarly, its
first physical implementation convinced more peo-
ple that quantum computing may not remain a field
of science fiction but become reality. The first exper-
imental implementation was published by a group
at IBM Almaden Research Center near San Jose,
California, using an NMR quantum computer [182].
They factorized 15, the smallest integer to which the
Shor algorithm can be applied (remember: N must
be odd and not the power of a prime).
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10.3.1 Qubit implementation

For the implementation of Shor’s factoring algo-
rithm, Vandersypen et al. used a custom-designed
molecule with five 19F and two 13C nuclear spins.

Figure 10.32: Custom designed molecule with seven
nuclear spin qubits [182].

The use of carbon and fluorine nuclei spreads the
frequencies over a relatively wide range and there-
fore allows for fast processing. 19F and 13C are both
spins-1/2, have generally long decoherence times
and a large chemical shift range that allows for fast
gating of the qubits. As shown in fig. 10.32, the
custom-built molecule contains five fluorine and four
carbon nuclei. As actual qubits, five fluorine and two
carbon nuclei were used; two additional carbon nu-
clei were not used in this experiment.

As shown in figure 10.33, the chemical shift separa-
tion between the qubits is typically of the order of
1 kHz, thus allowing for single-qubit gate switching
times of the order of 1 millisecond. Each qubit is
coupled to every other qubit, although some of the
coupling constants are relatively small. While the
large number of coupling constants allows for di-
rect implementation of all two-qubit gates, it leads
to a rather complicated spectrum: since every spin is
coupled to six other spins, we expect 26 = 64 reso-
nance lines for every spin or a total of 7 · 64 = 448
lines. Most of these transitions can actually be ob-
served, but several resonance lines are so close in
frequency that they are difficult to distinguish.

Figure 10.34 shows the multiplet structure for the
first qubit, which has resolved couplings to the other
six qubits. Another consequence of the many cou-
plings is that for every gate most of the couplings
must be refocused.

13C

19F

Coupling constants

Frequencies, relaxation times

Figure 10.33: Resonance frequencies, relaxation
times and coupling constants of the
molecule.

Shor’s algorithm consists of two main blocks: the
period-finding algorithm and the quantum Fourier
transform (QFT). It requires a quantum register con-
sisting of n workspace qubits and m qubits to store
the number N to be factorized. For N = 15, m must
be at least 4, since 24 = 16 > 15 and n in the gen-
eral case 8. However, using specific properties of the
N = 15 case (for details, see section 10.3.3), n can be
reduced to 2. In their implementation, Vandersypen
et al. chose n = 3, to find additional periods.

10.3.2 Initialization

Shor’s algorithm starts with the initial state

|y0i = |0000001i, (10.15)

i.e., a pure state. The NMR system must therefore
be first be brought from the thermal to a pseudo-pure
state. In this case, Vandersypen et al. used temporal
averaging. As we discussed in Section 10.2.4, the
temporal averaging process for two spins involves a
sum over three different experiments. For the seven-
qubit system used for the factorization experiment,
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J17 = -221 Hz

J14 = -114 Hz

J16 = 38 Hz

...

J12 = 25 Hz

J12 = 15 Hz

J15 = 7 Hz

NMR frequency [Hz]

Spin 1

-200 0 200

Figure 10.34: Qubit 1 multiplet structure from the
couplings to 6 other qubits. The
bottom trace shows the experimental
spectrum.

the total number of states is 128. Out of these, the
population of 127 must be averaged, while that of the
last one is kept. Equalizing 127 populations could
be done be averaging over 127 cyclic permutations.
Using the fact that the populations of many of these
states are already equal, it was possible to reduce the
number of individual experiments to 36.

The success of the preparation scheme can be
checked by applying a selective readout pulse to the
system, measuring the resulting FID and converting
it into a spectrum. We recall that the different reso-
nance lines in the multiplet of lines originating from
a single spin can be labeled by the state of its cou-
pling partners. If these coupling partners are in a
pure state that is also an eigenstate of the Hamilto-
nian (e.g. |000000i, this corresponds to a single line
in the spectrum of the fist spin. Starting from a pure
eigenstate like (10.15), we therefore expect to find
only a single line in the spectrum of a selectively
excited qubit. As Figure 10.36 shows, this is ful-

(0) (1) (2) (3) (4)

l0> Inverse

QFT
H n

ax mod N1

xx
n

m l1>

Figure 10.35: Simplified network model of Shor’s
algorithm [182].

Qubit 1

Qubit 2

Qubit 3

Figure 10.36: Demonstration of pure state prepara-
tion in the spectra of qubits 1–3 [182].

filled to an excellent approximation in the spectra of
the first three qubits. The small additional lines that
would not be present in the ideal case can be used to
quantitate the degree of purity achieved by the state
preparation.
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Figure 10.37: Implementation of Shor’s algorithm
by gates for N=15 and a=7 [182].

While the source register is initiated in the state |0i,
the target register is initially in state |1i. This is
achieved by first initiating it into state |0i and sub-
sequently flipping bit 7. In the implementation de-
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tails of fig. 10.37, qubits 1-3 hold the workspace bits,
with qubit 1 the msb and qubit 3 the lsb, while qubits
4-7 hold the register m, with qubit 7 representing the
lsb.

The next step is the generation of the superpo-
sition of all spin states of qubits 1–3 (the input
qubits) through the Hadamard transformation. The
Hadamard gates were implemented by spin-selective
p

2 pulses on the first three qubits.

10.3.3 Computational steps

One of the crucial steps of Shor’s algorithm (as well
as of corresponding classical algorithms) is the mod-
ular exponentiation f (q) = aq mod N for 2n values
in parallel. As discussed in Section 8.3.3, this is done
qubit by qubit with the help of the identity

aq = a2n�1qn�1 ...a2q1aq0 , (10.16)

where qn are the bits of the binary representation of
q. While the period of f (q) can be as large as N, only
the values 2 and 4 appear for N=15. Since a must be
coprime with N, the possible choices of a for N=15
are 2, 4, 7, 8, 11, 13 and 14. For the choices a =
2, 7, 8, and 13, one finds a4 mod 15 = 1, while a2

mod 15 = 1 for a = 4, 11 and 14. Since we only
require the values 0, 1, 2 and 3 for q, it can be en-
coded in a 2-qubit quantum register. Vandersypen
et al. chose to use three qubits for encoding q; the
additional qubit may be used for test purposes. To-
gether with the m = 4 (� log2 15) qubits needed to
encode f (q), a total of seven qubits were used. To
implement the exponentiation efficiently, the powers
of a were precomputed on a classical computer. The
eight values of q are stored as a superposition in the
qubits labeled 1, 2, 3 in Figure 10.37. The exponen-
tiation is then computed in the target register through
CNOT operations.

The first step is a multiplication mod 15 with aq0 . q0
is encoded in qubit 3, so multiplication by aq0 corre-
sponds to multiplication with a if qubit 3 is 1 and to
multiplication with a0 = 1,i.e. to NOOP, if qubit 3 is
0. Since the target register is initialized into state |1i,
multiplication by a can be done by adding (a � 1),
again controlled by qubit 3. This addition can be

implemented by two CNOT operations: for a = 7,
qubits 5 and 6 must be changed from 0 to 1. The
controlled addition is therefore achieved by the oper-
ation CNOT (3,5) CNOT (3,6), as shown in Figure
10.37, where the operations are labeled A and B. For
a = 11, qubits 4 and 6 must be incremented, which is
done as CNOT (3,4) CNOT (3,6).

The second step is multiplication with a2q1 mod
15. For a = 7, this corresponds to multiplication by
72 � 15 · 3 = 4, controlled by q1 or qubit 2 in Fig-
ure 10.37. Multiplication by 4 corresponds to a shift
of the bits in the register by 2 positions. In the case
of modular multiplication, the shift is replaced by a
rotation. In the case of the four-bit register m, multi-
plication by 4 can thus be implemented by a rotation
by 2 positions, which corresponds to swapping bits
0 with 2 and 1 with 3. In Figure 10.37, this corre-
sponds to SWAP operations of 4 with 6 and 5 with
7, both controlled by qubit 2. Each SWAP opera-
tion can be decomposed into 3 CNOT operations, of
which the second is turned into a CCNOT for the
controlled SWAP. These CNOT and CCNOT oper-
ations are labeled CDE and FGH in Figure 10.37.
Vandersypen et al. used a number of simplifications
(=“compiler optimizations") to simplify or eliminate
specific gates, taking advantage of the special situa-
tion. These simplifications are indicated in the fig-
ure as dotted gates (can be eliminated) or dashed
gates (can be simplified). Gate C can be eliminated
because the control qubit is zero, thus reducing the
gate to the unity operation. The doubly controlled
gates D and G act on target bits that are in basis
states (not superposition states), which allows for ad-
ditional simplifications. Gate F can be simplified to
a NOT operation, since the control qubit is always 1.
Finally, gates E and H can be omitted, since they act
on qubits that are no longer accessed afterwards and
therefore do not affect the result.

After the multiplication step, Shor’s algorithm re-
quires an (inverse) QFT of the register n. It contains
Hadamard gates and phase gates (i.e., z-rotations) of
45 and 90 degrees. In practice, the phase gates are
usually turned into rotations of the coordinate axes:
rather than apply actual z-pulses (which can be im-
plemented by composite rotations), one simply shifts
the phases of all earlier pulses by the corresponding
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amount. This reduces the power deposition of the
system and the overall duration of the algorithm, and
the resulting fidelity is higher, since phase shits are
essentially ideal rotations.

10.3.4 Readout

At the end of the standard algorithm, the informa-
tion is stored in the populations of the spin state.
As discussed in Section 10.2.8, one obtains the pop-
ulations by applying an RF pulse, measuring and
Fourier transforming the FID.

Qubit 1

Qubit 2

Qubit 3

|0>

|0>

|0> + |1>

Figure 10.38: Spectra of the three result-qubits for
the input a = 11 [182].

The three spectra shown in Figure 10.38 display the
resulting state of the three qubits for an input of a =
11. They contain only positive lines for qubits 1 and
2, indicating that they are in state |0i at the end of
the computation. Qubit 3 has one positive and one
negative line, indicating that it is in a superposition
state |0i±|1i.

After the inverse QFT, qubit 3 is the most signifi-
cant qubit. The exponentiation therefore generates
the states |100i = |4i and |000i = |0i. This indicates
that the period of the probability (8.44) is p = 4.
Since n = 3 qubits were used, the desired number
r is given by (see Section 8.3.3) r = 2n/p = 2. A
classical calculation yields the greatest common di-
visor of 112/2 ±1 and 15 as 3 and 5, and thus directly
the prime factors of N.

If the input a = 7 is used instead, the observed spec-
tra shown in Figure 10.39 show that both qubits 2
and 3 are in superposition states, while qubit 1 is

Qubit 1

Qubit 2

Qubit 3

|0>

|0> + |1>

|0> + |1>

Figure 10.39: Spectra of the three result-qubits for
the input a = 7 [182].

again in state |0i. The possible results are therefore
the states |000i = |0i, |010i = |2i, |100i = |4i, and
|110i = |6i, indicating a period of 2. We conclude
that r = 8/2 = 4 and gcd(74/2 ± 1,15) = 3,5 as be-
fore. Obviously both trial values for a produce the
expected result.

10.3.5 Decoherence

The experimental implementation of Shor’s algo-
rithm represented a milestone for quantum informa-
tion processing, not because of the result itself, but
because it provided the possibility of studying limi-
tations to quantum information processing in a work-
ing example.

1:

2:

3:

4:

5:

6:

7:

(0) (1) (2) (3)

Figure 10.40: Pulse sequence used for the imple-
mentation [182].
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The IBM group used some 300 RF pulses to imple-
ment the algorithm. Most of the pulses were used
not for the processing itself, but to compensate for
unwanted effects, such as spin-spin couplings and
magnetic field inhomogeneity.

ideal

experimental

model

Figure 10.41: Comparison of the ideal spectrum, the
experimental and the result of a model
calculation including the effect of de-
coherence processes [182].

The overall sequence lasted almost 1 second, which
is longer than some of the relevant relaxation times
(=decoherence times). This caused a significant loss
of information and therefore deviations of the exper-
imental measurements from the idealized behavior.
Vandersypen et al. analyzed these deviations with
a model for the relevant decoherence processes and
found that they could explain most of the differences
with their model.

10.4 Spin chains

qubit 1 2 3

Figure 10.42: Model of a spin chain.

As discussed in a separate lecture by J. Stolze, linear
chains of coupled spins represent interesting model
systems that allow one to study various aspects of

quantum mechanical dynamics. Such systems are
also useful test systems for various quantum algo-
rithms and have therefore often been implemented
by NMR quantum computers. A few examples of
such implementations will be discussed here.

10.4.1 Quantum state transfer

Quantum-state transfer (QST), i.e., the transfer of an
arbitrary quantum state a|0i+ b |1i from one qubit
to another, is an important element in quantum com-
putation and quantum communication. The most di-
rect method to implement QST is based on SWAP
operations. For a pair of coupled qubits, this is an el-
ementary operation. For a chain of qubits with only
nearest-neighbor interactions, a series of SWAP op-
erations between neighboring qubits can be used un-
til the quantum state arrives at the target qubit.

For specific systems, it is possible to transfer quan-
tum information without applying gate operations,
but instead relying on a static coupling network. If
a quantum state is prepared at one end of such a
chain, it will travel through the chain without re-
quiring control operations. The main difficulty with
this approach is the required precision with which
the couplings have to be realized in order to generate
a transfer with high fidelity. This requirement can
be relaxed significantly, without compromising the
fidelity of the transfer, by applying gate operations
to the receiving end of the spin chain that effects the
transfer. The capability for applying such gate op-
erations is not an additional requirement, since such
operations are required anyway if the spin chain is to
be used for communication between quantum reg-
isters. This gate accumulates any amplitude of the
initial state that is transferred along the chain. The
protocol allows one, in principle, to obtain unit fi-
delity for the transfer, even if the couplings along
the chain have arbitrary fluctuations, as long as a fi-
nite amplitude reaches the end of the chain. Obtain-
ing a large transfer amplitude requires multiple iter-
ations, each of which includes the evolution of the
spin chain and the two-qubit gate operation. This
procedure is known as iterative quantum state trans-
fer [184].
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For the spin chain without the end-qubit, we assume
that the Hamiltonian is

H = 2p Â
i,k

Jik

⇣
S(i)

x S(k)
x +S(i)

y S(k)
y

⌘
.

In addition, we assume that the coupling between the
end-qubit and the one next to it is switchable, i.e. it
can be turned on and off. With these requirements,
the protocol can be implemented.
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Figure 10.43: Achieved transfer of the quantum state
with increasing number of iterations.

Figure 10.43 shows how the amplitude that can be
transferred to the final spin increases with each iter-
ation. The different curves correspond to different
coupling strengths. While the differences lead to a
different transfer speed, they all increase towards full
transfer with increasing number of iterations. Apart
from the increased transfer, decoherence leads to an
overall loss of signal amplitude and therefore to an
optimal number of iterations.

10.4.2 Two- and three-body interactions

In most cases, spins (and also most other qubits) are
subject to pairwise interactions. This means that the
Hamiltonian contains only terms depending on sin-
gle qubits and pairs, such as

H = aS1
z +bS2

xS3
y + . . . .

Three-body interactions, such as

H3 = cS1
z S2

xS3
y

are only rarely found in nature, but they can arise
as effective interactions or they can be generated in
quantum simulators. They can significantly change
the static as well as the dynamical properties. They
can, e.g., speed up the transfer of quantum states
along a spin chain. As a specific example, we con-
sider a minimal model a spin chain consisting of
three members coupled by the Hamiltonian

H = S1
xS2

x +S1
yS2

y +S2
xS3

x +S2
yS3

y

+
l

2
�
S1

xS2
z S3

y +S1
yS2

z S3
x
�
. (10.17)

Here, the parameter l represents the strength of the
three-body interaction, relative to the two-body in-
teraction.

With this Hamiltonian, we can consider different
types of state transfer: we can initialize the left-hand
spin and transfer its state to the right-hand side, or we
can do the opposite, or we can let the state be trans-
ferred from left to right and back. All three types
of transfer can take place, with or without the three-
body interaction. In the absence of the three-body
interaction (l = 0) the system is symmetric, i.e. the
transfers left!right and right!left run at the same
speed, and the round-trip time is twice the time of
the individual transfer.
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Figure 10.44: Duration of QST as a function of
the coupling strength of the 3-qubit
interaction.

This is no longer the case in the presence of the
three-body coupling, as shown in fig. 10.44.

The experimental implementation can be simplified
by decomposing the Hamiltonian into two commut-
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ing parts. Each of these two parts generates a har-
monic evolution and the superposition is still quite
simple [181].

Figure 10.45: Pulse sequence used to implement part
of the Hamiltonian of eq. (10.17).

Figure 10.45 shows the pulse sequence that was used
to implement half of the Hamiltonian [181].

Time t / t0

hS
1 z
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Figure 10.46: Predicted (curves) and measured (data
points) transfer of the state along the
spin chain for three different strengths
of the 3-body interaction.

Figure 10.46 shows the observed transfer of the state
S1

x along the chain. When it reaches the final qubit,
the total system is in the state S1

z S2
z S3

x . This final state
is reached for all values of l , but fastest when l = 4
and slowest for l = 0.

Problems and Exercises

1. Derive the equations of motion (10.2) from
the Schrödinger equation using the Hamilto-
nian (10.1).

2. Show that the effective Hamiltonian (10.8)
is the correct Hamiltonian H r in the ro-
tating frame by transforming the solution of
the Schrödinger equation from the laboratory
frame to the rotating frame and demanding that
the transformed operator H r generates the cor-
rect time evolution.

3. Verify equations (10.13) and (10.14) using the
properties of spin matrices.
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