
INFORMATION TRANSPORT IN SPIN CHAINS

Chains of coupled spins 1/2 (or qubits) are potentially useful for the short-range transport
of information in a quantum computing device. Of special importance is the transport of
entanglement, i.e. the undistorted transfer of quantum states involving more that one qubit.
The earliest proposals for information transport involved standard spin waves which, however,
inevitably show dispersion effects and consequently distort any initial wave packet. Later it was
discovered that XX chains with site-dependent couplings or magnetic fields allow for perfect
transfer of quantum states. Those systems were found by mapping a chain of N spins 1/2 to
a single spin N/2 in a transverse magnetic field. We showed how to generalize the original
proposal which involved strongly varying values of the couplings. In the generalized scheme
perfect transfer of states is achieved even in systems with almost homogeneous couplings. I will
also discuss alternative concepts and more recent developments.



Quantum hardware

Quantum bits store information. Superpositions |ψ〉 = α| ↑〉+ β| ↓〉 → quantum parallelism.
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What about quantum lines to transmit information?



Short-range transfer of multi-qubit states?

Single photons carry no entanglement, but quantum algorithms must handle entangled states.

Within a quantum processor these states must
be transferred between quantum registers or
from/to quantum memory, over short distan-
ces. Spin chains may be useful for that purpose.
Pictures and quotation from S. Bose: Quantum Com-

munication Through Spin Chain Dynamics: An Intro-

ductory Overview, Contemp. Phys. 48, 13-30 (2007);

arXiv:0802.1224.



The spin-12 Heisenberg-XXZ chain

Heisenberg exchange interaction between two s = 1
2 spins

HHeisenberg = −J ~S1 · ~S2

chain of N spins with nearest-neighbor interactions, anisotropic in spin space:
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The spin-12 Heisenberg-XXZ chain: Eigenstates

The ferromagnetic ground state: | ↑↑↑ ... ↑↑↑〉 = |000...000〉.

A single spin-flip state S−2 | ↑↑↑ ... ↑↑↑〉 = | ↑↓↑ ... ↑↑↑〉 = |010...000〉
is not an eigenstate of HXXZ: (S+

i S
−
i+1 + S−i S

+
i+1) moves the inverted spin left or right.

How about coherent transport ?

A single spin-wave state

|q〉 =
1√
n

n∑
r=1

eiqrS−r | ↑↑↑ ... ↑↑↑〉 =: S−(q)| ↑↑↑ ... ↑↑↑〉

is an eigenstate of HXXZ with energy ~ω(q) = −J cos q. In the Jordan-Wigner picture this
corresponds to a single fermion in a Bloch state in a tight-binding chain model.

However, a two spin-wave state

S(q1)−S(q2)−| ↑↑↑ ... ↑↑↑〉

is not an eigenstate of HXXZ: the Jordan-Wigner fermions interact due to the Szi S
z
i+1 term.

Undistorted transfer of states with two or more flipped spins is probably difficult due to
interaction. Unfortunately single spin-flip states have problems of their own...



Spin wave packets

S. Bose: Quantum communication through an unmodulated spin chain PRL 91, 207901 (2003)

Prepare the first spin of a Heisenberg chain in a superposition state α| ↑〉+ β| ↓〉:

(α| ↑〉+ β| ↓〉)⊗ | ↑↑↑ ... ↑↑↑〉

is a superposition of the ground state and of single spin-wave states: a spin wave packet which
may be received with reasonable fidelity at the other end of the chain after a certain time.



T.J. Osborne and N. Linden: Propagation of quantum information through a spin system PRA 69, 052315 (2004)

Instead of states localized at a single site,
transfer Gaussian spin wave packets which
occupy only the least dispersive part of the
dispersion relation, and which are narrow in
wavevector space rather than in real space.

Note:
Least dispersive ≈ linear ω(k)
≈ equidistant energy values

→ fairly good transfer of wave packets. k

ω

Fairly good is fine, but...



How about perfect transfer ?

Harmonic oscillator: Any wavepacket initially
localized on the right develops into its perfect
mirror image localized on the left.
Equidistant spectrum, but continuous degrees
of freedom. Difficult to define qubits.
(Possible, though: continuous-variable quan-
tum computing)

t=0t=t0

Angular momentum J : |Jz = +J〉 can develop
into |Jz = −J〉 by rotation in a transverse
field.
Equidistant spectrum, but zero-dimensional.
“Transport” in Hilbert space,
no transport in real space.
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M. Christandl et al.: Perfect State Transfer in Quantum Spin Networks PRL 92, 187902 (2004)

C. Albanese et al.: Mirror Inversion of Quantum States in Linear Registers PRL 93, 230502 (2004). bla

Single particle on a (2J + 1)-site chain ⇐⇒ Angular momentum J

State |n〉 localized at lattice site n = 1, ..., 2J + 1 ⇐⇒ Jz eigenstate |m〉

Transition amplitude (hopping matrix element) ⇐⇒ (Jx or Jy) matrix element between
between n and n± 1 |m〉 and |m± 1〉.
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√
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Find a lattice Hamiltonian H such that
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Inhomogeneous XXZ chain; however, ∆ causes problems even if only one particle is present.
(M. Wieśniak, Heisenberg chains cannot mirror a state Phys. Rev. A 78 052334 (2008))

Consider ∆ = 0 from now on → inhomogeneous XX chain.

A state |x〉 = α| ↑〉+ β| ↓〉 of spin 1 is transferred to spin N by H after a time τ :

|x↑↑↑↑↑↑↑↑↑↑↑↑〉 −→ | ↑↑↑↑↑↑↑↑↑↑↑↑x〉

This is still just single-qubit transport; however, after the same time τ

| ↑x↑↑↑↑↑↑↑↑↑↑↑〉 −→ | ↑↑↑↑↑↑↑↑↑↑↑x↑〉

and also
| ↑↑x↑↑↑↑↑↑↑↑↑↑〉 −→ | ↑↑↑↑↑↑↑↑↑↑x↑↑〉

.... and so on.



The Hamiltonian mirrors states

Every state |xyz ↑↑↑↑↑↑↑〉 of the spin chain is mapped to its mirror image | ↑↑↑↑↑↑↑zyx〉 after
τ , but only for ∆ = 0, so that “particles” (reversed spins) do not interact with each other (and
do not feel an inhomogeneous magnetic field),
→ inhomogeneous XX chain.

The mirror property of this spin-12 chain is due to
- the equidistant energy spectrum
- symmetry properties of the corresponding eigenvectors.

There is another spin-12 chain which acts as a perfect mirror for states
(inhomogeneous XX with additional field in z direction).



Some simple questions

• Is that all or are there more mirror chains?

• If there are, can we engineer chains with perfect transfer/mirroring properties, plus other
desirable features?

• How about mixed (T > 0) states?

• What is really needed to achieve perfect transfer ?



Back to the model

General inhomogeneous open-ended (N + 1)-site S = 1
2 XX chain:
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Equivalent Hamiltonian of noninteracting “spinless” lattice fermions:
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can be diagonalized,

H =
N∑
ν=0

ενc
†
νcν.

c†ν creates a fermion in a single-particle eigenstate |ν〉 of energy εν;

c†i creates a fermion at lattice site i.

The εν and |ν〉 determine the dynamics completely: every eigenstate of H is uniquely
characterized by the fermion occupation numbers nν = c†νcν.



Single-particle properties of a mirror Hamiltonian

εν (ν = 0, ..., N) and |ν〉 are eigenvalues and eigen-

vectors of the one-particle Hamiltonian matrix H1.

Mirror symmetry: hi = hN−i and Ji = JN+1−i

⇒ the eigenvectors of H1, have definite parity: either

〈i|ν〉 =+ 〈N − i|ν〉 or 〈i|ν〉 =–〈N − i|ν〉.
Parity alternates as εν grows.
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(Discrete version of the “Knotensatz”: For a real symmetric tridiagonal matrix with only positive subdiagonal

elements (i) all eigenvalues are real and nondegenerate, and (ii) the sequence of the components of the jth

eigenvector ,in ascending order of the eigenvalues, j = 0, 1, ... shows exactly j sign changes.)

The eigenvectors of H1, i.e. the single-particle eigenstates of H, are alternately even and odd.

Wanted: Operation M which maps an arbitrary many-particle state to its spatial mirror image.

Sufficient: M maps every single-particle state |ν〉 to its mirror image:
M = Π(−1)ν (Π: parity, i.e. k → N − k).

Implement the extra sign for the odd states as a dynamical phase factor exp[iπ(2n+ 1)]
by designing the εν appropriately.



Designing the spectrum

Evolution of the single-particle state |i〉 localized at site i:

e−iHt|i〉 =
N∑
ν=0

e−iενt|ν〉〈ν|i〉. This is what we have.

Alternating parity ⇒ 〈N − i|ν〉 = (−1)ν〈i|ν〉 ⇒

|N − i〉 =
∑
ν

|ν〉〈ν|N − i〉 =
∑
ν

(−1)ν|ν〉〈ν|i〉. This is what we want.

⇒ This is what we need:
e−iεντ = (−1)νeiφ0 = e−i(πν−φ0)

or equivalently
εντ = (2n(ν) + ν)π − φ0,

where n(ν) is an arbitrary integer function.

Every system with such single-particle energies generates perfect mirror images
of arbitrary input states!



Designing the Hamiltonian ?

The function n(ν) in εντ = (2n(ν) + ν)π − φ0 is completely arbitrary ⇒ infinitely many
single-particle spectra suitable for quantum state mirroring.
n(ν) ≡ 0 and n(ν) = qν(ν+1)

2 + pν (p, q integer) are the systems of Albanese et al.

Which Hamiltonian (if any) yields a given / desired spectrum εν ?

Hald 1976: For a given nondegenerate (single-particle) spectrum there exists a unique
symmetric tridiagonal Hamiltonian matrix with nonnegative subdiagonal elements and with the
additional spatial symmetry properties discussed above.

How to find that matrix ?

• Direct method; algorithms by Hochstadt (1974), Sussman-Fort (1982), Wang et al. (2011),
Bruderer et al. (2012).

• Simulated annealing: optimizing the set of eigenvalues.



What do we have ?

Many proposals for quantum information transfer in spin chains are restricted: a single spin
state is transported through the completely polarized (ground) state.

Here, states involving arbitrarily many sites are perfectly mirrored across the system.
No restriction to the ground state nor even to the set of pure states.
(All single-fermion eigenstates of the Hamiltonian and thus arbitrary many-fermion density operators are mirrored

perfectly at the same instant of time τ .)

Mirroring twice reproduces the initial state.
⇒ Time evolution of the system is periodic with period 2τ .

Proof: Time autocorrelation function of an arbitrary observable A = A†:

〈A(t)A〉 = Z−1
∑
n

〈n|e−βHeiHtAe−iHtA|n〉 = Z−1
∑
n,m

e−βEnei(En−Em)t|〈n|A|m〉|2

(Z =
∑
n e
−βEn ; β = (kBT )−1 ; H|n〉 = En|n〉)

(En − Em) are all multiples of some energy, ⇒ 〈A(t)A〉 is a periodic function of t.



Quantum spin chain engineering

Homogeneous XX chain:
simple, but no perfect transport (dispersion).
Inhomogeneous chain:
Perfect transport, but awkward couplings.

Compromise ?
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Idea:
Bring the old spin-wave dispersion relation into the right
shape (all energy differences are suitable multiples of some-
thing) by a little tweaking.



Results for a 31-spin chain:
- cosine-like dispersion
- almost constant (±3.3% variation) couplings
- perfect transfer

(For 50 sites the coupling varies only by ±1%.)
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Safe transfer at any temperature
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Real part of 〈Sz0Sz30(t)〉 in a 31-spin chain at T = 0 and T = 1000, near t = π. The maximum
possible value 1/4 of the correlation at t = π demonstrates perfect state transfer.
Inset: same correlation for T = 0 over an extended time range shows somewhat irregular
behavior at intermediate times.



Perfect long-time periodicity
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Autocorrelation of the x spin component at site 19 in a 41-site chain,
at times t (solid) and t+ 0.25− 48π (dashed), at T = 0 and T = 104.

Jordan-Wigner → many-fermion correlation involving lattice sites 0 through 19.

Note the rapid decay and the absence of oscillations at high T . (→ Gaussian).
P. Karbach, JS, Phys. Rev. A 72 030301(R) (2005)



Conclusions

• There is an infinitely large class of inhomogeneously coupled spin chain systems capable of
perfect quantum information transfer.

• The freedom of choice within that class allows for some spin chain engineering.

• Perfect state transfer over fairly long distances in a chain with almost homogeneous
exchange coupling and without external magnetic field.

• In contrast to many previous proposals, there is no restriction to the transfer of single-spin
states at zero temperature. The systems discussed here can transfer genuinely entangled
states involving several qubits, at arbitrary temperature.

• Sensitivity to perturbations like noise and imperfections will be / has been the subject of
further research.
(A. Zwick, G.A. Alvarez, JS, O. Osenda, Phys. Rev. A 84 022311 (2011), 85 012318 (2012))

• General reference:
G.M. Nikolopoulos and I. Jex (eds.), Quantum State Transfer and Quantum Network
Engineering, Springer Series in Quantum Science and Technology (maybe 2013).



Alternative concepts and other developments in quantum information
transport through spin chains

• The dual-rail protocol (D. Burgarth and S. Bose, Phys. Rev. A 71, 052315 (2005))

State α|0〉 + β|1〉 is encoded as α| ↑↓〉 +
β| ↓↑〉 by Alice, all other spins in both
“rails” are ↓.
Bob measures total magnetization of the
two end spins on his side without measu-
ring them individually. Transfer is successful
when total magnetization is zero.
Transfer is perfect if it is sucessful.
Only single-qubit transport.

• Repeated swap to memory (V. Giovannetti and D. Burgarth, PRL 96, 030501 (2006))

Only single-qubit transport in a chain with all spins initially ↓.
Bob swaps the state of his end spin with a fresh |0〉 from memory at regular intervals.
After some time the whole chain is again ↓ and all information is in memory.



• Redundant encoding (Z.-M. Wang et al. arXiv:0812.4578)

Encode a single logical qubit in more than one physical qubit (=spin) and study
transmission properties of several possible encodings.

Only single-qubit transport.

• “Double-hole” chain (G. Gualdi et al. arXiv:0812.2404, PRA 78, 022325 (2008))

Ferromagnetic long-range dipolar coupling,
the second and second to last spins are eli-
minated. The two lowest energy eigenstates
of the resulting system are equivalent to
|01〉 ± |10〉 (for the end spins) with all hig-
her energy states separated by a sufficiently
large gap.
Effective dynamics in this subspace allows
for perfect transport.
Only single-qubit transport.

(Similar proposals were also made earlier by others, see

the review by Bose, arXiv:0802.1224.)

• Externally pulsed Ising chain (J. Fitzsimons and J. Twamley, PRL 97, 090502 (2006); G.A. Paz-Silva et

al. PRL 102, 020503 (2009))

Uniformly coupled Ising chain subject to global pulses (NMR...).
Basic idea: repeated SWAP operations between neighboring spins.
Can also be used to mirror states involving more than one qubit.



Jordan-Wigner: The ugly details

Single-spin operators −→ many-fermion operators
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