7 Errors and Decoherence

7.1 Motivation the computation. It is absolutely vital to mainte
the phase coherence between the components «

7.1.1 Sources of error state in order to perform a genuine guantum con
tation.

Any physical implementation of a computationalye distinguish three effects that cause the result

tion into the desired output by applying appropriatg -

operations as prescribed by the algorithm. These

algorithms break the computation into suitable el- ¥ The gate operations are not perfect.

ements that can be handled by the_avqilable hard-y The isolation between the quantum mechan
ware. The gogl of the_ hardware design is therefore system (the quantum register) and the envir
to build a device that implements the mathematical  ent is not perfect. The spurious interactic
operations as precisely and efpciently as possible. \uiih the environment cause unwanted trar

Unfortunately, any real physical device deviates to  igng (=relaxation) and decay of the phase
some degree from the idealized mathematical opera- harence (=dephasing or decoherence).

tion; this holds true for classical as well as for quan-
tum computers. ¥ The quantum system itself differs from the ic

alized model system considered in the desig
the quantum computer. This includes, e.g. ¢
pling constants that are slightly different fro
the ideal ones, and quantum states that are
included in the computational Hilbert space.

While one tries to approximate the mathematically
ideal operations with a suitably engineered device,
it is not always possible to avoid errors, i.e., differ-
ences between the mathematically predicted result
and the physically executed computation. An im-
portant goal of computer architectures is therefo@ectiorf 7.2 summarizes the processes that lead t
to avoid, recognize and correct errors in the compliess of coherence in the system and therefore tc
tation. In classical computers, the most importaf@ss of quantum information.
design element for this purpose is the use of digital
representation of information. As a result, every bit
of information can be re-adjusted after every compud-1.2 A counterstrategy
tational step to match the voltage corresponding to
either the 00" or O1" state of the respective hardwaféile one can (and should!) try to minimize the
. . errors, it is important to realize that there are te
This elementary error correction scheme can not be . .
. : nical, Pnancial as well as fundamental limits to
used in quantum computers, where the qubits can be "' . . .
. . o recision that can be achieved. It is, e.g., not
in arbitrary superpositions of the relevant quantur% . o . .
: ) . Ible to shield gravitational interactions between
mechanical states. As discussed in other parts of tﬁls .
. . system and the environment, or the quantum 3u
book, the input of a quantum computation is encoded. .
. . . ations in the apparatus that controls the gate op
in the exponentially many complex amplitudes of a
o 7 ions and reads out the result.
initial state, which is subsequently steered along a
specibc path in Hilbert space (whose dimension al3o combat the detrimental effect of these imperf
grows exponentially with the number of qubits) tdions on the results of computational processe:!

a bnal state, whose properties contain the resultmimber of options exist.
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7 Errors and Decoherence

* Optimize the classical apparatus that controls
the quantum system to make the gate operations
as perfect as possible.

* Design gate operations in such a way that er-
rors in experimental parameters tend to can-
cel rather than amplify. A typical example for
this approach is the use of composite pulses in
NMR [56].

¢ Use error correction schemes.

 Store the information in areas of the Hilbert
space that are least affected by the interaction
between the system and its environment.

* Use active schemes for decoupling the system
from the environment, such as dynamical de-
coupling.

It appears likely that any useful implementation of
a quantum computer will require the implementa-
tion of all of these principles (and more) into its de-
sign. We discuss possible approaches to recognize
and correct errors in quantum computers in Section
How information can be “protected” against de-
coherence will be discussed in Sections [7.4] and [7.5

7.2 Decoherence

7.2.1 Phenomenology

Interference between two or more quantum states
lies at the heart of the most striking quantum phe-
nomena. As in classical wave optics, interference is
possible only if the states keep a definite phase re-
lationship, that is, if they are coherent The destruc-
tion of coherence by uncontrollable interactions with
environmental degrees of freedom is called decoher-
ence If decoherence occurs so fast that no interfer-
ence phenomena can be observed, the resulting be-
havior can often be described in terms of classical
physics.

If two states behave in the same way under the influ-
ence of the environment, they can stay coherent in
spite of the coupling to the environment. If, on the
other hand, they behave very differently, that is, if
they can be easily distinguished from each other by

the environment, they will lose coherence rapidly.
This simple intuitive observation is important for
quantum error correction and decoherence-free sub-
spaces, to be discussed in later sections.

In this section we shall illustrate, by means of simple
examples, how decoherence induced by interaction
with the environment affects the state of a system,
for example, a quantum information processing de-
vice. In the beginning the system is in a carefully
prepared pure state; for a single qubit, this is

1% (0)! = alo! +b|1!.

The (complex) amplitudes of the initial state with re-
spect to some basis in Hilbert space represent the
quantum information to be processed. Classically,
the uncontrollable interactions between system and
environment cause the system evolution to deviate
from the ideal evolution.

If the environment is itself a quantum mechanical
system, the interaction between system and environ-
ment builds up correlations between the system and
environmental degrees of freedom. For the ideally
prepared initial state, the environment also can be
described as an (unknown) pure state, which does
not depend on the state of the system. The total
quantum system, consisting of the quantum register
and its environment, is then in a product state. Of
course the preparation of the system’s state requires
interaction with other degrees of freedom; for the
sake of simplicity we assume that those degrees of
freedom can be separated sufficiently well from both
system and environment once the preparation of the
system’s initial state is accomplished. Similarly, the
gate operations require interactions with external de-
grees of freedom. We always treat these interactions
as classical fields. This can be well motivated by not-
ing that, e.g., the currents generating magnetic fields
are generated by typically > 10" electrons, which
are highly correlated, and therefore cannot possibly
be described quantum mechanically.

The interaction between system and environment
transforms this product state into a correlated state,
which can be highly entangled. The state of the sys-
tem alone (as represented by its density matrix) then
in general is no longer pure, but mixed, as discussed
in Chapter 4]
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7 Errors and Decoherence

7.2.2 Semiclassical perturbation

The simplest description of the spurious interaction
between system and environment uses a single spin-
1/2 to describe the quantum register and a magnetic
field for the environment. Since we discuss errors,
we may restrict the analysis to the case when this
field is weak compared to the static field that defines
the energy of the basis states |0! and |1!. In this limit,
the most important effect of the error field is due to
the component along the static field, which is usually
chosen to be oriented along the z axis.

To illustrate its effect, we consider a system that is
initially in a superposition state

It (0)! = alO! +b|11.

If the two states |0! and |1! are eigenstates of the
driving Hamiltonian H with eigenvalues Ey and E},
an ideal evolution will transform this state into

! (1)) =alote” Eolhp p|11e" IR

Figure shows, as an example, a magnetization
vector in the xy plane. This corresponds to the case
a=>b= #LE Evolution corresponds to precession
around the z-axis, and the resulting phase angle is
E = (El " Eo)t/ hi.

Dephasing is due to additional (uncontrollable) in-
teractions, which shift the energy of these eigen-
states by a small (and in general time-dependent)
amount ! g,. As a result, the average energy level
shift difference changes the relative phase between
the states by an angle

t

1
% o ('EI " |E0)dl$

The state then becomes

n (t)' = a|0!e" iE()l/hei! /2_|_b|1!e" iE]l/he" il /2.

In the example of Figure this corresponds to a
stochastic change of the orientation of the magneti-
zation vector.

% O *+ - L&
ng"
#

Figure 7.1: Coherent and incoherent contribution to
the evolution.

7.2.3 Ensemble average

Within the present picture of a single spin in a clas-
sical magnetic field, this additional phase increment
arises from the fluctuating external field. The mag-
netic field has a well-defined value at all times,
thereby causing a well-defined Larmor precession.
However, the resulting precession angle differs be-
tween computational runs and it deviates from the
mathematically correct representation. As shown in
Figure the resulting evolution of the spin cor-
responds to Brownian motion of the individual spin
orientation.
Single spin: diffusion process

Ensemble, time-average
entangled system: decay

<S>

Phased

Time

Time

Figure 7.2: The left-hand part of the figure shows the
evolution of a spin in a randomly varying
magnetic field, which corresponds effec-
tively to a diffusion process. The right-
hand part shows how the average magne-
tization of an ensemble of spins decays
when the individual spins evolve in ran-
dom magnetic fields.

If we now consider an ensemble instead of a single
quantum system, the random evolution of the indi-
vidual members means that the average magnetiza-
tion vector differs from that of the individual spins.




7 Errors and Decoherence

Since the orientation of the individual spins (qubitsputation will involve repeated runs of the compu
is progressively randomized as a function of timdional process and the ensemble average corresy
the average magnetization vector becomes smallénen to the temporal average over the different ru
as shown in the right-ahdn part of Hig.[7.1. Since the
phase angles increase with time, the average mag
netization tends to zero, as shown in the right-hand

part of Figurg 7J1. As a function of time, the averagg, 5 quantum mechanical model, the phase-kicks
over the individual motional processes can be Comgg re|ated to states of the external system, whic
pared to a diffusion process. referred to as the bath. Typical examples for rele\
In most systems, an exact description of the prélegrees of freedom in the environment are phor
cesses that are responsible for these phase kickpassing through the system or modes of the radia
not available. If the interaction that causes them doP¢ld causing, e.g., spontaneous emission. For e
not have a memory (Markovian limit), it is possi-State of this external system, the quantum registe
ble to describe their average effect by an exponenti@gins in a pure state, but the phasker this realiza-
decay process for the relevant density operator efé@n will be different from those for other states

ments. For the off-diagonal elements one writes the environment.

Since it is never possible to know exactly the st
of the external system, one has to average ove

The dephasing tim& is related to the RMS strengthacce_SSibIe states r?f the eﬁtern_al s;_/stem. IThi_s
of the error Peld. More detailed descriptions of thegg@ging process changes the situation qualitativ

effects can be found in the NMR literature, where th@e vector fePfese”t'Ug the system IS No Ignger (
effect is discussed as relaxation[57]. rotated by these additional phase kicks, it also

comes shorter. Technically, it is no longer in a pi
state, but rather in a mixed state. In the simple |

2.4 Quantum mechanical model

pij (t) = pij (0B -E/ Bt/ T2,

g ture given above, the vector no longer ends on
K unit circle (or sphere), but remains inside it.
I; g Such a situation can be represented, e.g., in the
kS of the so-called spin-boson model where the sys
g} is represented as a spin 1/2 (=qubit), and the envi
L ment as a system of bosonic modes e.g. phonc

Time Here, we consider a simpler model consisting of t
interacting qubits:A (the system) an® (the envi-
ronment). Each qubit is represented by a s%),ilacnd

, _ . we assume that the two spins are coupled by ar
Different relaxation processes also cause the d'a(giange interaction

onal density operator elements to approach thermal ©
equilibrium with a time constant;. These longi- H =—Sa-Sg. (7.1)

tudinal relaxation processes also affect the quantum b ) o
Jfror o > 0 the ground state of this Hamiltonian

computation, causing a decay of the information.”" “ _ : e _
However, they are also needed, since they bring tH¥ Singlet, with energy eigenvalue; o, the triplet

l .
system to the ground state, as required for initializSta€s have energy ;o (see Appendix 14). Th:
tion. initial state is the most general product state (cc

ar
The ensemble consideration is relevant not only fcl?r 2B
ensemble quantum computers, but also to quanturn/,(o» _ <a| ) 4 b ¢>> ® <c| ) 4 d| ¢>>
computers consisting of individual quantum sys- A B
tems. Even in these cases, a typical quantum com- = ac 1) +bc 1) +ad 1)) +bd |l]).

Figure 7.3:Relaxation of population difference.
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7 Errors and Decoherence

|y (0)) can be expressed in terms of the singlet and
triplet states whose time evolution is simple.
111>

N>+ >

0 /4

-3ab/4

Triplet
NA>-11>

Energy /h

Singlet

Figure 7.4: Eigenstates
system.

of the coupled 2-qubit

In particular, we can write the two states with an-
tiparallel spin orientation as

1) = 5509 +h)
1
1) = ﬁ(lﬂ—lto)),
where
lto) = ;7:( T +14))
1
ls) = ;EGTU—IHM

are the singlet and triplet states of this subspace.
They are also eigentstates of the Hamiltonian and
therefore evolve as

|l‘0> (O)e—iwt/4
|s> (O)e+3iwt/4,

l70)(¢)
|s)(2)

The resulting time-dependent state |y/(z)) is

exp () 1vio)

ac| 11) +bd| 11)

+3fad(1 4+ +be(1 — )| 1)

1 .
t5lad(1 =)+ be(14 )| 1),

This state is strictly periodic because the extremely
simple model (7.1) contains only a single energy
or frequency scale, ®. More complicated models

of a system coupled to an environment of course

will show more complex behavior, but the general
timescale on which decoherence phenomena hap-
pen, will still be inversely proportional to the cou-
pling between system and environment (in our case,
o).

The degree of entanglement between system A and
environment B is given by the concurrence (4.48). A
short calculation leads to the compact result

= |ad — bc|?| sin wt|. (7.2)
The concurrence is a periodic function of time, as it
should be for a periodically varying quantum state.
The maximum value of C is determined by the ini-
tial state. If |a| = |d| = 1 or |b| =|c| = 1 the state can
become maximally entangled; on the other hand, if
lal| = |c| =1 or |b| = |d| = 1 the state can never be-
come entangled at all. In fact, in these two cases
|y (0)) is a triplet state, | 1) or | JJ), which is an
eigenstate of .7 and thus remains unaffected by the
coupling between the two qubits. All other cases
where C(t) = 0 are equivalent to this one, since
ad = bc only if A and B initially are in the same
pure state, which can always be written as | 1) in an
appropriate spin-space coordinate system. Unfortu-
nately the stability of these states under the interac-
tion ((7.1)) cannot be exploited in any useful way since
in general the environment cannot be controlled by
the experimenter and thus the equality between the
initial states of system and environment cannot be
guaranteed. In particular, the environmental degrees
of freedom are usually strongly coupled to additional
degrees of freedom.

7.2.5 Entanglement and mixing
We now discuss the case of strongly entangled states.

For the special case b=c=0,a=d =1 we see that
the initial product state of system and environment

[y (0)) =11))

develops into a maximally entangled state at time t =

)It//(

(7.3)

i

exp (

8

x
20

=" . ae
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7 Errors and Decoherence

In a quantum computer (and most other cases) we
are only interested in the system A and therefore con-
sider only this subsystem. Since it is entangled with
the environment, we can not write its state as a wave
function, but must express it as a density operator

(3e)

s (35)) (8 ()79

AN+ 1D,

2#

where Trp denotes the trace over the Hilbert space of
the environment B (see Chapter d)). Apparently this
density operator is now diagonal. The spin has equal
probabilities for being in the 1 and | states, but the
phase information has been lost. The state is now
a maximally mixed one, whereas the initial density
operator ! (0) was pure.

tal Signay

\//m

Figure 7.5: Oscillation of the coherence for different
interaction strengths and total coherence
for average over many couplings (green).

Coherence

For the present trivial model, the pure state could
be recovered by simply letting the combined system-
environment evolve for an identical period of time.
However, more realistic models of the environment
have (infinitely) many degrees of freedom and the
resulting evolution is no longer periodic. As a result,
it is no longer possible to recover a pure state from
the mixed state.

This effect occurs also for other initial conditions,
e.g., when the system is initially in a superposition
state. As an example, we consider the case a = b =

c= —d= f’ such that

soy=3(1m+10) o(in-14) . 0o

Note that the A part of this initial state is an eigen-
state of Sy (#.29). A measurement of the x compo-
nent of the system spin at t = 0 thus would clearly
reveal the coherent nature of the state. Atz = ﬁ this
state evolves into the following maximally entangled

state

eXP<M>| (54))
;[M>A®<|¢>i|¢>)3
—ile (1) |

The corresponding density matrix of A is again
and a measurement of S, (of A) would yield zero.
The initial information about the relative phase be-
tween | 1), and | |), is lost.

(7.7)

The common feature of the two states |$ (5)) (7.4)
and is the fact that the two basis states | 1),
and | |), of the system in both cases are strictly cor-
related to two mutually orthogonal states of the envi-
ronment B. For these are the eigenstates of S,
and for the eigenstates of S,. This observation
is an example of what was called “the fundamental
theorem of decoherence” by Leggett [58]:

If two mutually orthogonal states of the sys-
tem of interest become correlated to two mu-
tually orthogonal states of the environment, all
effects of phase coherence between the two sys-
tem states become lost.

Note that in the situation just described the final state
of the system can be inferred from the final state of
the environment; that is, the environment has “mea-
sured” the state of the system. This kind of reason-
ing can be applied to many instances of the quan-
tum mechanical measurement problem, for example,
the disappearance of the interference pattern in the
standard two-slit experiment of quantum mechanics
which occurs as soon as one measures through which
of the two slits each single electron has passed.
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7 Errors and Decoherence

7.2.6 Decoherence in large systems

The rate at which decoherence occurs in a given sys-
tem is one of the most important parameters for as-
sessing the viability of a quantum computer imple-
mentation. However, it is important to realize that
the rate at which quantum information is lost is not
identical to the rate at which a single qubit undergoes
decoherence. The difference is that during a typical
computational process, information is spread over all
qubits of the quantum register. It is therefore affected
by decoherence processes acting on all qubits and
decays correspondingly faster. The ultimate limit of
this scaling process would be Schrodinger’s cat [59]:
in "classical" systems, the decoherence processes be-
come so fast that it is no longer possible to observe
quantum interference.

While it is generally assumed that the decay will
be faster in larger quantum registers, there have
been few experimental data to verify this prediction.
While sufficiently large quantum computers are not
available yet to test this, it is possible to measure
the decoherence in model quantum registers consist-
ing of correlated multi-qubit states. Nuclear spins in
solids provide a particularly useful system for study-
ing these processes, since correlated states of sev-
eral thousand spins can be generated by suitable se-
quences of radio-frequency pulses.

1.0

0.8

single spin decoherence

0.6

04

Normalized signal sgp,

02 650\spins

09, 10 20 30 40 50
t,/ us

Figure 7.6: Decay of the coherence of quantum reg-
isters of different size.

Fig. shows the decay of coherence in quantum
registers of different sizes. Each model quantum

register consists of a cluster of nuclear spins ('H).
Clearly, the larger quantum registers consisting of
larger numbers of spins decay more rapidly, indicat-
ing that they are more fragile.

600+
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T T T T
0 1000 2000 3000 4000

Number of correlated spinsK

Figure 7.7: Decay rates of quantum registers of dif-
ferent size.

As shown in Fig. the decoherence rate in this
system grows approximately with the square root of
the number of qubits [60, 61]]. This is considerably
less than what one would expect if each qubit inter-
acted independently with the environment. If this
behavior can be reproduced in other systems, the
prospects for large-scale quantum computing may be
brighter than one would expect from simple linear
extrapolations.

How the decoherence rate increases with the num-
ber of qubits depends on the type of coupling to
the environment that is responsible for the decoher-
ence as well as on the encoding scheme used. While
decoherence-free subspaces are a useful concept, we
should not expect to find regions of Hilbert space
that are completely immune to decoherence. Rather,
these subspaces will be “sub-decoherent", i.e. the
decoherence of states completely contained in them
will be slower than for average quantum states.

In realistic systems, the external fields acting on the
different qubits are usually correlated to a finite de-
gree. Depending on the degree of correlation, it
should be possible to identify “clusters" of qubits
for which the couplings are more strongly correlated
than on average. The average rate at which infor-
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7 Errors and Decoherence

mation is lost from the quantum register can then be
significantly reduced by suitable encoding schemes
within such clusters of correlated spins [62].

7.3 Error correction

7.3.1 Basics

As errors are unavoidable in quantum as well as in
classical computing, one must devise strategies for
fighting them. Error-correcting codeslo this by de-
tecting erroneous qubits and correcting them. As in
classical computation, redundancy is an indispens-
able ingredient here, and other than in classical com-
putation, extreme care must be exerted not to garble
the quantum information by the measurements in-
volved in error detection.

Quantum information is not only potentially more
“valuable” than classical information, but unfortu-
nately also more vulnerable, because a qubit can
be modified in more subtle ways than a classical
bit, which can just be flipped from 0 to 1 or vice
versa. Furthermore a classical bit can be protected
against errors by basically copying it several times
before transmission or processing and comparing the
(different) results, an accidental simultaneous flip of
many copies being extremely improbable. This is
the basis of classical error correction.

No such procedure was in sight during the early
years of quantum computing, and thus many sci-
entists were very skeptical whether the attractive
prospects of quantum computing could ever become
a reality. Fortunately, methods for quantum error
correction were soon discovered, based on coding
schemes that permit detection of the presence and
nature of an error (by converting it into a “syndrome”
coded in ancillary qubits) without affecting the in-
formation stored in the encoded qubit. As we will
discuss below these quantum error-correcting codes
protect quantum information against large classes of
errors. For simplicity we will restrict ourselves to
errors that occur when information is transmitted
through space (communication) or time (data stor-
age) without being modified. The detection and cor-
rection of errors during the processing of data is the

subject of fault-tolerant computingwhich we will
only briefly mention at the end of the section.

The development of quantum error correction has
culminated in the threshold theoreni63 64] stating
that arbitrarily long quantum computations can be
performed reliably even with faulty gates, provided
only that the error probability per gate is below a cer-
tain constant threshold.

7.3.2 Classical error correction

To correct an error in a classical environment, one
needs to detect it. The simplest way to do this is to
generate copies of the input information to be pro-
tected from errors and to compare the outputs. More
generally, the information must be encoded in some
redundantway, which allows for reconstruction of
the original data after partial destruction or loss. Of
course, completelylost data cannot be recovered at
all, but depending on the effort invested, the proba-
bility of complete loss can be made as small as de-
sired.

The kind of error correction used and its probabil-
ity of success depend on the kind of error expected.
To keep things simple, suppose we want to transmit
single classical bits O or 1, where each bit is transmit-
ted successfully with probability 1 — p and is flipped
(once) with probability p, neglecting the possibility
of multiple flips. In the simplest possible case, we
encode the the logical bit 0, in the code word)0 con-
sisting of two physical bitsand likewise 1 +— 11. If
the receiver of the message detects that the two bits
are identical, he may assume that the transmission
is correct and accept it. If one of the two bits was
flipped, the detected state is 01 or 10, which are out-
side of the set of legal codewords. The receiver will
therefore detect that an error has occured and may re-
quest re-transmission of the data. If the probability
that one of the two bits flips is p, there is a probabil-
ity of 2p(1 — p) ~ 2p that a transmission error occurs
and the transmission has to be repeated. In addition,
there is a probability of p? that both bits have flipped.
In this case, the error would go undetected.

If we do not want to only detect the presence of an er-
ror, but want (or must) also correct it, we can encode
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the logical bit in three physical bits. We choose fosequently reconstruct the original qubit state. Ac
the logical state Othe code word 000 and 1 111. tional (orancillary) qubits are needed in this proce
Thus 000 and 111 are the only two legal code words store the kind of error (oerror syndromg Not
of the present coding scheme. If the error probabivery conceivable error is detectable or correcta
ities for the three bits are identical and independetitink of a multi-bit error converting one code wo
of each other, the probability for error-free transmignto a different legal code word in a classical redt
sion of the logical bit is(1 — p)3, the probability dant coding scheme. The more kinds of errors
that one of the three physical bits has Ripped is vgants to be able to correct, the more resources
3p(1— p)?, and so on. After transmission we checkeeds. The code to be used must be chosen ol
if all three bits of the code word are equal, and if thelgasis of a specibc error model and the choice dec
are not, we Rip the one bit which does not conforwhich errors can be detected and / or corrected.
to the other two. This leads to a wrong result if twi .

: ) : . ne of the specibc problems related to the quan
or three bits were RBipped during transmission, an

the total probability for this to happen [£(3— 2p). nature of information was already addressed ab
L . the fact that measurement may destroy the very
which is much smaller thap for sufbciently small

formation that was to be protected. This probl
b- cannot be circumvented by just copying the inf
Usually the bit-Bip probabilityp grows with the dis- mation because of the no-cloning theorem (Sec
tance (in space or time) of transmission, so that erfér2.11). Furthermore, in addition to the simple cl
correction must be repeated sufbciently frequentsjcal bit RBip error, quantum mechanics allows
(but not too frequently, since copying and measuriren entire continuum of possible errors, for exa
operations may themselves introduce additional grle, continuous amplitude and phase changes. F
rors, which we have neglected here for simplicitynately the quantum error correction schemes de
A larger number of physical bits per logical bit caroped during the past decade or so sufbce to co
be employed, increasing the probability of succedarge classes of qubit errors.
but also increasing the cost in terms of storage spag

e o

or transmission time, as well as the complexity of the ne way to |_ores_ent the bas_lc prmm_ple .Of quant

. : error correction is that the information is encoc
encoding and decoding schemes.

in a Hilbert space whose dimension is larger tt
Of course in todayOs mature communication techntile minimum. Within this larger Hilbert space, it
ogy, far more sophisticated error correction schem#sen possible to choose two states as the basis s
are in use than the one just presented, but they aflthe qubit in such a way that the interactions t
rely on checking for damage and reconstructing tleause the error do not transform one state dire
original information with the help of redundancy. into the other. Error detection then checks if the s

tem contains contributions from other states anc

so, forces the system back into that part of Hilb
7.3.3 Quantum error correction space that corresponds to the qubit.

The classical error correction scheme discussed

above is useless in the quantum regime, becaus@.3.4 Single spin-flip error

involves a measurement of every single bit transmit-

ted. In the quantum case this entails a collapse of the begin with, let us discuss the transmission
qubit state to one of the measurement basis statgabits between a source A (Alice) and a recei
so that any information stored in the coefbcieatsB (Bob). The transmission channel leaves e
andb of a superposition statd0) + b|1) is lost. One transmitted qubit either unchanged (with probabi
of the central ideas of quantum error correction i&— p) or Bips it by applying arX operator (Sec
to detect the kind of error that has occurred (if anyjon [4.2.]) (with probabilityp). The situation is
withouttouching the information stored, and to subeompletely analogous to the classical case discu
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above. While quantum mechanics prevents Aliagorrection (which, however, is not always succe
from copying quantum states for error protectiorful, as we will see). Note that the two components
it provides her with entanglement as a new tool tBobOs state are always complements of each
achieve the same goal, as we will now see. In ordfar example, if qubit 2 was Ripped during transm
to safely transmit the qubit sta0! + b|1! Alice sion, Bob receives instead pf:1! (7.8) the state

initializes two further qubits in the staté!, so that

the initial state of the three qubits is 1! = 2/010 +Db[101. (7.9)

| — | " | —
|yo! =2|0! +bj1!" |00 =2/000 +b[100. 7.3.5 Error detection and correction

al0) + b|1) The goal of quantum error correction is to detect t
an error has occurred and to correct it in such a\

10) a|000) + b[111) that the originally encoded quantum information
recovered. For this purpose, we need a measure

0 ~ that detects the relevant errors and does not gen

Figure 7.8:Circuit for encoding the input qubit in g & Measurement back-actlon_ that perturb_s the co
states. For the present choice of encoding, suit

logical qubit using three physical qubits.

g d 9 Phy g observables are the operat@sZ, andZ;,Z3. Both
Next she applies two CNOT gates, both with the DrLﬁgal code words0!, = |000 and|1_! L= 111 are
gubit as control and with the second and third qubiggenstates of these operators with eigenvaile

as targets, respectively. These two steps transfom‘?o’ both components of B_obOs state are eigen-
the state to states of these operators with the same eigenvall

-1. Since both components are eigenstates with
lyi! = CNOT1CNOTL2|wp! same eigenvalue, their linear combination is alsc
' ' eigenstate with this eigenvalue,
— 2j000 +b|111. 7.8) °9 g

7.7\ yn! =#|y! =#a010# b|101
Alice thus encodes the information initially con-

tained in the state of a single qubit in an entanglédd analogously foZ;Zs. BobOs state is thus
state of three qubits. This operationrist cloning: Ways an eigenstate @7, andZ;Zs, and the actior

Cloning (lf it were possible) would lead to a prOd-Of these two observables does not affect the s

uct state of the three qubits with all of them in th@P2rt from an unimportant global phase. By m

same single-qubit state. Finally Alice sends the thr&&1N9Z1Z2 andZ;Zs Bob can detect what kind ¢
qubits down the faulty channel, and relaxes. error has occurred (if any) and act accordingly. |
the above examplé&1Z, = # 1 andZ1Z3 = 1 from

out damage; this happens with probabilit# p)* He appliesx, and thus restores the statg!, apart
since the three qubits have been transmitted indepgrym a sign.

dently. With probability $(1# p)? one of the three _

qubits has been acted on by the Oerror operatord NS Procedure works for all cases where only ¢
and with probability ?(1# p) one of the three pos- qu!t was B_lpped, as one can verify eaS|Iy._ I
sible pairs of two qubits have been Ripped. Finall;‘}‘,Ub'_tS are leped, how_ever, the error correction f
with probability p all three qubits have been Ripped(@S It does in the classical case): the sl +

Note that this is the only case where in spite of epl010 y|el'ds f[he same values fm%zz andZ,Zs as
rors having occurred, Bob receives a combination {he statg ! just discussed and is thus Ocorrect
the legal Oquantum code worde@ and|111 and 1© @111 +bj00C.

thus is unable to detect the error. In all other cas@$ere is a slightly different procedure for identif
the entangled nature of BobOs state allows for eriog the error which avoids any modibcation of Bol
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7 Errors and Decoherence

state and which only employs CNOT gates. For that
procedure Bob needs two extra (ancilla) qubits pre-
pared in the state |00!. He then first carries out two
CNOT operations with qubits 1 and 2 of the message
as controls, respectively, and qubit 1 of the ancilla
as target, and then two CNOTSs with qubits 1 and 3
of the message as controls, respectively, and qubit
2 of the ancilla as target. The two ancilla qubits
then contain the error syndrome: the first qubit is
0 if the first and second qubits of the message are
equal, the second qubit of the ancilla compares the
first and third qubits of the message. This procedure
is an example for a more general strategy of stor-
ing the error syndrome in additional dimensions of
the Hilbert space provided by ancillary qubits. This
does not affect the information in the message, and
the stored error syndrome can be used to correct the
error, or to perform a fault-tolerantquantum compu-
tation which directly processes the encoded message
and takes into account any errors which have been
detected and stored as error syndromes. This elimi-
nates (to some extent) the necessity to repeatedly de-
code and re-encode information, a procedure which
is itself susceptible to errors.

7.3.6 Continuous errors

So far, we have assumed that a bit is either flipped
or left invariant. A more realistic error model is
a continuous error, which corresponds to a rotation
around the corresponding axis. We start with the x-
axis, which we have considered so far. A rotation
around the X-axis by an angle 0 corresponds to

Re(6) = e 19%/2 :cosgl" isingX.

As in our above example, we apply this rotation to
the 2" qubit and obtain the state

cosg (al000! +b[1111)" i sing (al010! +b|1011),

i.e. a superposition of the code word with no error
and the code word with the error. Since these states
have different eigenvalues for the syndrome extrac-
tor Z,Z,, performing a measurement with this op-
erator will project it either onto the legal code word

or on the one with the flipped bit. In the first case,
we detect not error (and there is none), in the second
case, we detect that the second bit has flipped and
correct it. The code therefore does not only detect
and lets us correct discrete errors, but also works for
continuous errors.

7.3.7 Decoding

The final step of the error correction protocol, after
error detection and correction, is the decoding step:
the logical qubit states are converted back to a single
qubit. In our example, Bob hs recovered the correct
encoded state |y;!a/000! +b|111!. He can recon-
struct Alice’s original single-qubit state a|0! + b|1!
by repeating Alice’s first two CNOT operations with
qubit 1 as control and qubits 2 and 3 as targets, re-
spectively:

CNOT;3CNOT 5 |y;! a/000! -+ b| 100!

al0! +b|11# 00!

The two ancilla qubits are no longer required and can
be discarded. The result for the first qubit is a0! +
b|1!, as required.

The probability for this outcome is 1" 3p?" 2p°,
that is, in most cases, provided p is sufficiently
small. In the case of an undetected double spin flip,
the resulting state is a|1! 4+ b|0!. The probability of
failure is thus O(p?), as compared to O(p) without
error correction.

7.3.8 Phase errors

Next we consider another continuous type of error,
which corresponds to a rotation around the z-axis. It
turns out that this new error type can be corrected
for by basically the same mechanism as for the rota-
tion around the X-axis. The error is a random z axis

rotation given by
, iep
g0z = ( ¢ ) (7.10)
0
cos(eg)1l+isin(eg)Z.

0

P(¢) o i
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7 Errors and Decoherence

¢ is a random angle between 0 and,2nd¢ is a related to a phase RiZ] by observing that the prc
Ostrength parameterO which controls the mean phastors to|0) and|1) (Sectio) can be writte
spread caused B(€) on average. The randomnessas
in this operation is related to environmental degrees

of freedom, for example, the random magnetic peld |0)(0] = P,= }(IJFZ); (7.16)
discussed in Sectidn 7.2.2. After the usual average 2
over that randomness we have a combination of no |1y(1] = P = }(1 ~-7).
error and a Ophase RipO caused by the op&rator 2
Z(a|0) + 1)) = al0) — b|1). (7.11) Projectors onto more general Hilbert space vec

can be written as linear combinationsioX, Y, and

Now, consider the action d in a different basis, Z- This is clear from the fact thatny 2 x 2 matrix

— Problem 1

0)x|1
+) = | >\f; : C X)) =) (712) 7he most general single-qubit error is given by
general unitary 2 2 matrix, combined with a pro
obviously jection to some axis, and can thus be written in tel
of 1,X,Y, andZ. We have seen that errors caused
Zlt) =F), (7.13) X andZ can be corrected for by simple procedur

that is,Z causes a bit Bip in the basis given by th%ﬂguﬁ]évigéhsefiztrﬁiig Y, errors caused by
eigenstates oX, and we have already seen how a '
bit Bip can be corrected for. The basis change from
Z eigenstates tX eigenstates and back is accon7.3.10 General single qubit errors
plished by a Hadamard gake (4.33), formally
The simple code that does the trick is a combi
HZH = X. (7.14)  tion of the two procedures already discussed and
_ _ invented by Peter Shor [65]. ShorOs code invo
In order to achieve error correction for a IOhas?he idea ofconcatenating two redundant codes: tr

Bipping transmission channel, Alice prepares th§ri . . o i
= coo3 ginal logical qubit is redundantly encoded in thi
state|ys) (7.8) as before, and then appliss™® = qubits in order to bght one kind of error, and th

H1HHs to [yy): each of these three qubits is again encoded in t

HO3\yn) — a| + ++) +b| — —) (7.15) qubits to take care of the second type of error.

The encoding procedure consists of well-kno
before sending her 3-qubit message off. Bob can usgps. Alice brst applies two CNOT gates with
almost the same procedure as before; however, &gginal logical qubit as control and with the tw
has to us&X1X, andX1X3 for error syndrome ex- additional qubits initialized to the sta{) as tar-
traction andZ,,Z,, andZ3 for error correction, be- gets. Then she applies a Hadamard gate to ea
fore applyingH*? to switch back to the computa-the three qubits. This maps the computational b
tional basis. states as follows:

0) = +++) ; ) =|-—). (7.17)

7.3.9 Projection errors
NowAlice adds two fresH0) qubits to each of the
Yet another kind of error that can happen to a singtaree code qubits in her possession for a total of
qubit is an Oaccidental measurementO resulting igubits. and again applies the two-CNOT encod
projection to|0) or |1). That kind of error can be procedure to each of these qubit triplets. This yie
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one logical qubit encoded in entangled states of nine
physical qubits:

1
0) — z—ﬁ(\OOOH—|111>)(\000)+|111>)
-(|000) +|111))
1) — L(\000)—|111>)(\000>—|111>)

2V2
(1000 — | 111)).

Assuming (as usual) that the encoding procedure is
flawless, we discuss the correction of single-qubit er-
rors. In order to detect a bit flip on the first qubit (or
any qubit of the first triplet, in fact), Bob may again
use the operators ZZ, and Z,Z3. Subsequent ap-
plication of the appropriate X operator then corrects
the error.

A phase flip on one of the first three qubits changes
the sign within that block, that is, it changes |000) +
|111) to |000) —|111) and vice versa. In order to de-
tect such a sign change and its location Bob again
only compares the signs of the three-qubit blocks
one and two, and one and three. Since X;X,X3 is the
operator for the simultaneous bit flip on qubits 1, 2,
and 3, that is, it maps |[000) — |111) and vice versa,
the sign comparisons between blocks are performed
by the somewhat clumsy operators X X,X3X4X5Xg
and X4XsXeX7X3Xg. A phase flip on any of the
first three qubits can then be repaired by applying
7,7,7s.

If both a bit flip and a phase flip have occurred on,
say, qubit 1, the two procedures outlined above will
both detect and remove their respective “target er-
rors”, so that indeed all single-qubit errors caused
by X,Z, or ZX = iY can be corrected. As argued
above, this means that an entire continuum of arbi-
trary single qubit errors is kept at bay by really tak-
ing care of only a finite (and very small) set of er-
rors. This remarkable fact is sometimes referred to
as “discretization of errors”, and it is instrumental to
the whole concept of quantum error correction. Note
that there is nothing similar for classical analog com-
puting.

The Shor code is conceptually simple and easy to un-
derstand, but it needs nine physical qubits per logical

qubit to provide protection against arbitrary single-
qubit errors. There are codes providing the same de-
gree of protection with 7 [66] and even 5 [67. |68]
physical qubits per logical qubit. However, we will
not discuss these here. Especially the five-qubit code
requires rather complicated operations to achieve its
goal; this seems to be another example for the trade-
off between speed and size so often encountered in
computer science.

7.3.11 Stabilizer codes

After the first error-correcting quantum codes were
found, more general theoretical frameworks for the
analysis and classification of codes were developed.
One such framework is called stabilizer formalism,
and the associated codes are stabilizer codes. We do
not discuss the general formalism here, but concen-
trate on examples.

The approach is based on group theory, and the un-
derlying group that we use here is the Pauli group
for n qubits. In mathematics, a group G is defined
as a set of elements that are combined with a binary
operation -, which is also called the group law. They
must fulfill the following requirements

* Closure: For any pair of group elements a,b €
G, the result of the group operation must be in
the group, a-b € G.

* Associativity: For all group elements a,b,c €
G,(a-b)-c=a-(b-c).

* Identity element: The group contains an ele-
ment called identity and often written as 1, the
the group operation yields 1-a=a-1=a.

* Inverse element: For every group element a,
there is an inverse element a~!, such that a -

al=a'la=1.

For a single qubit the Pauli group consists of the unit
matrix 1 and the three Pauli matrices X, Y, Z, all with
prefactors -1, 4-i. These matrices form a group un-
der matrix multiplication: a product of two group el-
ements is again a group element. For n qubits, direct
products of matrices from the individual qubit Pauli
groups form a group in a completely analogous way.
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7 Errors and Decoherence

Suppose now thétis a subgroup of the-qubit Pauli  terized by|n, k,d]. Our example of the simple bif
group and that a certain sit of n-qubit states is in- Bip correcting code was a [3,1,3] code, which

variant under the action of all elements $ifthen lowed to correctv = 1 bit Rip errors. There is a
Vs is said to be the vector spacebilized by S, elaborate theory of classical error-correcting coc
and S is called thestabilizer. The basis vectors of and in fact a class of quantum error-correcting co
Vs can be used as code words fostabilizer code. may be derived from classical codes. These cc
A simple example for = 3 is provided by the set are called CalderbankbShorbSteane (or CSS) «
S={1,212,,2,Z3,21Z3}. Here,Vs is spanned by [69,[70] after their inventors. They are a subclas:
[000 and|[111, which are both eigenstates of althe stabilizer codes, as discussed in Chapter 1
four operators with eigenvaluel. [32]. The codes witlh =5 [67,[68] andn = 7 [66]

- . . mentioned above both hawe= 1 (that is, two code
The nontrivial elements of the stabilizer for this code : .
ords, or one logical bit) and = 3. It can be showr

work as errc_Jr—_syndrome extractors: they_ leave a(lvgee Chap 12 of [32]) thai= 5 is the minimum size
states containing only legal code words intact ar} ;
r a 1-error-correcting quantum code. Neverthels

map all states affected by errors to other states. D{Ee Pve-qubit code is of limited practical use beca

ferent errors must be distinguishable by the syn-. . . .
. it involves complicated encoding and decoding p

drome extractors in order to be correctable. We have
. . cedures, and because fault-tolerant quantum log

seen earlier that for the present simple three-qubi

code only single-qubit Rip errors can be correcteg,peratlons are difbcult to implement in this code.
while two-qubit RBips lead to wrong transmission re-
sults and three-qubit Bips are not detected at all. 7.3.12 Fault-tolerant computing

The phase Rip code discussed in secfion §.3.8 }Wse have only discussed simple transmission

the stabilizer generatordX1 and 1XX, where we . . . :
space or time) of quantum information, without cc

have omitted the indices. For the 9-qubit Shor code, , . . .
stdering any logical operations (except those nee

the stabilizer set can be generated by the 8 °fr quantum error correction). For quantum com
erators 271111111 177111111 111771111 . q . o g F
ing to become practical, it is necessary to perfc

111177111 111111271 1111111727 logical operations in a fault-tolerant wa
XXXXXX111 , and111XXXXXX . gicalop Y-

For a code withu-qubit code words, one may clas-—{ B / 01239~ 0.
sify errors by their weight, that is, by the number of ;| 40.*5

nontrivial Pauli matrices applied to the code words.
It is desirable to construct a code able to correct
errors up to a maximum weight; such a code is
calledw-error-correcting. The achievabledepends
on the similarity or dlstlng_u!shablllty of the codeThis means that all quantum gates (including th
words employed. If the minimum distance (as ex-

pressed by the number of differing qubits) betweelﬁSed In quantum error correction) should be imy

. : . mented in such a way that they do not assume
any two code words igd, then the maximumw is . . 4
. . . input qubits or the gate operations to be perfe
given by the integer part af/ 2. Of course the min-
. . : free of errors. As a consequence gates should
imum distance depends on the numbef logical

. . . operate on single logical qubits (which do not of
(qubits encoded (as' 2ode words) in the physical any possibility of detecting and correcting error

(qu)bits. In our example code for correcting singleg
gubit bit Bips, the distance between the code wor gt on the redundant code words of a quantum et

1000 and[111 wasd — 3, which allowed us to cor- correcting code. During these operations care n
rect '1< 41 2 Ripped bits ’ be taken to keep errors from propagating too quic

through the set of qubits employed. Of course the
Classical as well as quantum codes are often char#ails of the implementations used in this Peld dep

) *PRH(+
, %-*$. 0%

Ej‘fillgure 7.9Basics of fault-tolerant quantul
computing.
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on the operations as well as the codes employed, atah inBuence the dynamics of the system and im
this rather technical discussion is beyond the scopeenting gates in such a way that the resulting pr
of this book. The fault-tolerant implementation ofigator does not depend too strongly on experime
a standard set of universal quantum gates for the farameters that are difbcult to control.

qubit Steane code is discussed in Chapter 10 of [32],

along with references to more technical treatments. 4| KDD

XY-4

-
b
]

.

-

The techniques of quantum error-correction, em- |
ploying concatenated multi-level encoding and fault~, o.1p
tolerant quantum logic, ensure that nontrivial quang |
tum computations may become practical. Under .01k
physically reasonable assumptions about the noise
present, it has been shown that

@)
I T

<
S O R

-30 -20 -10 0 10 20 30
Flip angle error (%)

Arbitrarily long quantum computations can jpe

performed reliably and effectively, thatis, i g re 7.10Fidelity of different pulse sequences ¢

ter 20 pulses as a function of the B3|
angle error of the individual pulses.

an affordable growth in resources such as gor-
age, circuit size, or time, provided that the f@l-
ure probability in individual quantum gatesjs
below a certain constant threshald[[63] 64].

As an example of the effect of experimental imp
fections, consider the dashed curve in [Fig. V.10

. . shows the cumulative effect of 20 successive r
This important result is known as the threshold theg-) ¢ by a nominal angler around the same axi

rem; additional references to the original work MaY e actual rotation angle differs by a few perce
pyiing ) )
be fou?ld 'g [311].dAtconst|d§|rark])'le a?]ountlof Worfkt'ﬁhe error accumulates over the 20 pulses and the
currently devoted 1o establishing the values o opagator has virtually no overlap (Pdelity) with t
threshold for different encoding and error corre arget propagator. This can be corrected by rota
tion schemes. Qualitatively, the tradeoff is clearﬁOt around the same axis, but changing the rota
the lower the error per gate, the Iovyer the Necessal¥is from pulse to pulse. For the curve labelled X
overhead for quantum error correction. 4, the rotation axis alternates between thandy
axes, for the KDD sequence, a 10-step cycle is L
for the rotation axes. Clearly, this sequence perfo

7.4 Avoiding errors almost Bawlessly, even if the Bip angle deviates
as much as 30 % from its nominal value.
7.4.1 Robust operations The principle of combining different rotations f

eliminating imperfections was originally introduce
While error correction represents a necessary péto NMR in 1979 by Malcolm Levitt[[71] 72]. |
of any quantum computer, the thresholds that hagan be used to eliminate different types of imperf
to be reached before error correction can be appliedns, as shown in Fig. 7.11. The composite pt
are very high. To make scalable quantum compuishose performance is represented in the righ h
ing feasible, it is therefore necessary to implemephnel generates rotations that are close to the t:
strategies that reduce the error probability of eagbtation even if the beld strength, pulse duratior

gate. Such efforts must encompass the complégtequency offset deviate from their nominal value

hardware (and software) design. While these efforts are important, they are stron

Most efforts will concentrate on engineering aspecisiplementation-specibc. It is therefore not pos
like reducing stray electric and magnetic Pelds thate to discuss them in detail here. We concent
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Simple pulse Composite pulse (i) Collective decoherence. Here the coupling
1o \ 12 . erators act in the same way on all qubits. In-
@ " \ case of spins, the operators then have the fc
[@)]
c o, G ! .
s 10 O "o Fo =) Sq, (7.18)
E 1
0.8 08 w wherea = x,y,z marks the spin component ai
0.4 0.0 0.4 -0.4 0.0 0.4 . ; :
Ol set Ol set i the index of the spin. Clearly the perturb

tion has full permutation symmetry in this ca:
This symmetry can be exploited in a count
strategy that we discuss in sectjon 7/4.3. O
three independent perturbation operators €
in this case.

Figure 7.11Comparison of the robustness of a sim-
ple rectangular pulse (left) with that of
a compensated composite pulse (right).

_. ¢ D
P o ’;’)‘J

Figure 7.13Schematic representation of clus

Figure 7.12:Storing and processing information in decoherence

quiet regions of Hilbert space can re-

duce the errot rate. ] o ] |
(iv) Cluster decoherence. This is an intermed,

case, where clusters of qubits decohere col
therefore on some general principles, which can be tively, while the different clusters decay ind
applied to many different implementations. In par-  pendently.
ticular, we discuss how quantum information can be
stored in particular regions of Hilbert space in SUCh,?
way that it is less affected by couplings between thée

syst(_em and envwonme_nt, other than those that aE5%coherence-free subspaces represent a possi
applied purposely to drive the computation. of shielding quantum information from the decoh
ence processes caused by the environment by
ing advantage of the symmetry properties of the ¢
pling operators between the system and environn

For the discussion of decoherence processes, (LZ@ We follow the discussion of Lidar, Chuang a

typically distinguishes a number of different case\é\/haley [74].
based on the type of coupling between the systefys discussed before, decoherence can be set
and environment: arise from interactions with the bath. It is thel

fore useful to distinguish three contributions to t

(i) Total de'coherence. Thisis thg WOSt general a3 familtonian of the full system (including the bath
essentially there are no restrictions on the oper-

ators that generate the decoherence. H =75 1g+1g! I+ Hnt.

4.3 Decoherence-free subspaces

7.4.2 Types of decoherence

(i) Independent qubit decoherence. If the couplingere.Z is a pure system operato¥/ is a pure batt
operator contains only operators acting on indeperator, and’4,; represents the coupling operat
vidual spins, errors of individual qubits are indt contains product operators
dependent. This is the case typically considered
. P . yp y %nt:ZFa! B(Xa
in quantum error correction. ~
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where F, are system operators and B, bath opera-
tors. If the system is a spin system, the F, are spin
operators. Depending on the type of environment,
the By may be spatial coordinates, creation / anni-
hilation operators, fields, spin components or some-
thing entirely different.

Decoherence is the nonunitary part of the evolution
of the system density matrix " g, which, under appro-
priate conditions, can be written as [[73]]

dll
dt *
1

T ) n i
3 Law (IR SFIHR 5 ).

)

+ é[%@ ] (7.19)

Here 7% is the system Hamiltonian plus any pos-
sible unitary contributions arising from the system-
bath interaction, and a4 are elements of a posi-
tive semi-definite Hermitian matrix. The operators
Fi are the generators of the decoherence process.
We may thus consider the possible decoherence pro-
cesses in terms of these operators. In spin systems
these are clearly the spin operators; for the typical
case of spin-1/2 systems, they are multiples of the
Pauli matrices.

Depending on the generators Fy , not all states are
equally subject to decoherence. Decoherence-free
subspaces exist if, for a certain set of states |i!, the
coupling to the environment does not generate a time
evolution. For a formal analysis, we write the corre-
sponding part of the density operator

wo "
= Z i,j
ij

where the coefficients "; ; depend on the initial con-
ditions. The condition for the existence of the
decoherence-free subspace is then, that the right-
hand side of vanishes for this state:

i jl,

1
3 Law (IFFIR R = 0

This condition can be fulfilled in a number of ways,
depending on the initial conditions (via the ; ;) and
on the coupling to the bath (via the a4 ). How-
ever, decoherence-free subspaces are only interest-
ing if no additional constraints have to be imposed

on the bath parameters (which are hard to control) or
the initial conditions of the system (since we would
like a general-purpose computer). Such additional
constraints can be avoided if the states |i! satisfy the
condition [74]]

il = o |i! (7.20)

for all operators Fy . This means that the states |i! of
the decoherence-free subspace form a degenerate set
of eigenstates for all error generators. Obviously this
is a rather restrictive criterion, and we will therefore
discuss a few examples after we have finished the
formal analysis.

7.4.4 Information capacity

To see if the concept is useful at all, we must
check how much information can be encoded in a
decoherence-free subspace. The answer depends on
the type of decoherence, i.e. on the set of opera-
tors Fy . For collective decoherence, DFS turn out to
be interesting, since the DFS asymptotically fill the
Hilbert space completely. In this case there are only
three independent perturbation operators, the total
spin operators (7.18).

While the condition requires only that the
states of the DFS have all the same eigenvalues ¢ ,
we discuss here only the case ¢y = 0. This im-
plies that the DFS is spanned by all singlet (total
spin quantum number S7 = 0) states of, say, K spins
(where K must be even). The number of these states
can be determined by considering states with a given
total spin z component S5. The total number of

S = 0 states is , the number of ways to pick

<)
K /2 down spins from a total of K spins. Some of
these S5 = O states are the desired singlets, the oth-
ers belong to subspaces with S # 0. Every such

subspace contains exactly one S5 = 1 state. The to-
K
K28 1 ) Hence the

number of St = 0 states (or subspaces, since each
subspace is one-dimensional) is

tal number of S = 1 states is (

dim[DFS(K)] = < Kljz >$ ( K/§$ 1 >
B K!
G TTCER I
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The number of logical qubits that can be stored ithe total spinm = #| Y, I*|i$ have the same enerc
this DFS ofK physical qubits then is and are therefore shifted by the same amount if
3 external beld RuctuatBsThe effect of Peld Ructu
N = log,dim[DFS(K)] = K! §|092K+ O(1), ations on off-diagonal density operator element:
then
where we have used StirlingOs formula (for lafge d
1 il pij = b(1)Ami;pij,
Inn!=(n+ 2)Inn! n+ O(1). (7.22)
2 where
In the limit of large systemsk " 1, the informaito L . ) .
capacity of the DFS therefore asymptotically ap- 2"/ = #“;IZ”M#J ’Zk:IZ’ﬁ
proaches that of the full Hilbert space. The result
(7.27) for collective decoherence was brst deriveahd the sum runs over all spin&m;; represents th

from group-theoretical considerations in [76]. change in the total magnetic spin quantum num

. which is proportional to the difference in Zeeman ¢
In contrast to this case, where the decoherence- . .
. . ergy between the two statg$and| j$ We can there:
free subspaces asymptotically bll the whole Hilbe

. N . F(t)re eliminate the decoherence due to such a pro
space, in the opposite limit of individual qubit deco-

) if we encode a qubit not in a single spin but assoc
herence or total decoherence, the amount of infor a :
. : : . e logical states as
tion that can be encoded in DFSs is negligibly small.
The last requirement that must be met is to imple-  [0$= |i$ | |1$= |/$
ment gates in this DFS. This is easily achieved in the.

> . . . with

generic model, but actual implementations in phys-
ical systems are still rare and must be discussed for Am;; = 0.
the specibc examples. We therefore switch to one /
such example, NMR.

7.4.5 Example: spin qubits

The simplest example of a decoherence-free sub- B
space is provided by NMR in liquids if we con-

;r:de%then(;?co;l;:jenc%:ndL::coed Feytroa?r?;mlynguafeﬁbure 7.14Dependence of the energy of the 2-s
'ng magnetic S. 1hey coup spin system product states on the strength of the «

thr_ough the sum of the-components of the nuclear ternal magnetic beld.
spin operators,

H.= b)Y I As shown in Fig[ 7.14, the energy of the states in
: " m = 0 subspace does not depend on the streng!

_ _ _ the magnetic Peld and therefore is not affectec
whereb(t) describes the Buctuating magnetic Pelg, 1, ations in the beld.

This Hamiltonian generates a diffusion-like evolu- _ )
tion of the spins. In such an encoding scheme, the logical states

_ ) _ not associated with single spins. As a result,
The effect of this randomly Ructuating Peld will not

be the same on all coherenges= #|p|j$ The dif- 1The energies are not exactly identical, since small energy
ference can most easily be shown for a system of ferem_:es (due_ to_chemlcal-s_hlft interactions) are used fol
. . . . dressing the individual qubits. However, these differen
identical spins (a hompnuclear spin system). In SUCh 41 small, of the order of 1 to 10 6 times the Zeemar
a system all stategbwith the same-component of energy.
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does not have immediate access to manipulate thieng, will be discussed in sectidn 7.5. Here, \
system, i.e., to apply gate operations to these lodirieRy discuss a related approach, which is pre
cal qubits. How this is done depends on the actuedlly less relevant, but brings some interesting
implementation and will not be discussed here.  sight into the dynamics of quantum mechanical <

tems. It is based on thguantum Zeno effed80].

From what has been said so far it should be obv_l_-h dea behind this radical simplibcation is to k
ous that such an encoding scheme will only work fo € \dea benind this radical sSimplibeation 15 1o Xe

the guantum state error-free by projecting frequel

Buctuations of the beld in the direction of the statifb ¢ to th b
Peld, i.e., along the-axis. If more complex systems: y & measurement) onto the subspace corresp

: L ing to the Ono errorO syndrome.
of coupling operators are present, it is still possl-
ble to design decoherence-free subspaces. While #&no of Elea (ca. 490 b 430 b.C., southern It:
general analysis is rather mathematical and mainias a student of Parmenides. He stated a nur
relies on existence proofs, without constructing a®f paradoxa to defend the teachings of Parmeni
actual DFSI[77], it is relatively easy to see that ifn particular the statement that motion is impos
a number of states are available that are immunehte and more than one thing cannot exist. One \
noise coupling to (e.gY; !}, arbitrary linear combi- known paradox is that of the race between Achil
nations of these states are still immune to this tygnd the tortoise. Achilles (the fastest man in an
of noise. It is then possible to choose a suitable linlity) is ten times as fast as the tortoise. Nevert
ear combination such that it is also immune to noidess he cannot overtake her if she gets a head
(e.g.) coupling td; I of (e.g.) 10 m: Achilles brst must cover these

m. During this time, the tortoise moves 1 m anc

A number of proofs of principle for .SUCh encpdmg{herefore still ahead. While he covers this meter,
schemes have been performed. A single qubit of 'Brtoise moves another 0.1 m and so on always s

formation was encoded in three spins in such a way

) : ifg ahead.
that it was protected from global noise along all three _ .
axes|[78]. The experimental results show that the if\nother motion paradox Oproves” that a body cal
formation that is contained in the noiseless subspa@@ve from A to B: for this, it would brst have
decays signibcantly slower than the unprotected iftove to the middle of the distance. For this it wol

formation. However, the encoding P decoding pr&rst have to move to the middle of the brst ha.lf, €

cess is not error-free, so the Pdelity with the encogiyhile these paradoxa are easily resolved, similar
ing process is actually much lower than without thgations exist in quantum mechanics that are r
encoding for most of the range of experimental pagrhey have been discussed under the heading O
rameters. tum Zeno effect”, although they cannot really

More recently, a complete quantum algorithnfonsidered paradoxa.

(GroverOs algorithm on two qubits) was implement&de consider the evolution of a system that is i
in a decoherence-free subspace that was embeddellly (att = 0) prepared in the stafay), which is
in a four-spin system in such a way that it reliablyan eigenstate of operatérwith eigenvalues;. The
reached the correct result in the presence of stroggite evolves under the inRuence of a Hamiltor
decoherence [79]. H , which does not commute witA. A possible
example would be that the Hamiltonian-sS, and
the observable i§,. A measurement with\ of the
system after some timewill then in general yield ¢

. . . result that is different frona.
While the DFS-approach to protecting quantum in-

formation is purely passive, i.e. it requires no extOr the spin system, we can consider a spin in
perimental actions, it is also possible to reduce dBx =+ 1/ 2 eigenstate o,

coherence by active means other than error correc- 1

tion. One such approach, called dynamical decou- ¥(0) = E(IOH 1))

7.4.6 The quantum Zeno effect
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In a magnetic field Bo||z the energy of the computa-
tional basis states are

.1 1
Sy = 5 7Bo En = +57Bo.
Therefore the state ¥ evolves to

() = # (01 ¢ 116 ),

where @ = By is the Larmor frequency. The prob-
ability that a subsequent measurement of Sy at time
t also finds the eigenvalue +1/2 is then

pr = [SPO)MPM)!] =
_ %|e|cq_t/2+e" icq_t/2|2
to, 1
= ‘COS(TN zi(l—l—cos(a)Lt)).
1.0
> Y2
Sos5
S
o P
0.0- :
0 ™ Time wpt 2m

Figure 7.15: Probabilities p, for measuring the ini-
tial state and pr for measuring the op-
posite state.

The probability of obtaining the opposite result ist

pn

Lo
5(1 cos(art)).

7.4.7 Repeated measurements

If such a measurement is performed, the projection
postulate states that after the measurement the sys-
tem is in an eigenstate of A. If the measurement
yielded the result +1/2, the system is again in the
same initial state, and the evolution starts out again
with the same time dependence. While the probabil-
ity for this outcome is less than unity, the important

point is that the first derivative of the time depen-
dence,

d

atPr| =Y

t=0
vanishes after the projection. During short times af-
ter the measurement, the system therefore does not
seem to evolve.

If a series of measurements is repeated with a sep-
aration (in time) of 7, the probability that n mea-
surements in sequence will always find the system in
state ¥(0), corresponding to my = +1/2, becomes

(7.23)

19 Measurements

4

Population difference p, - p.

Time / a.u.

Figure 7.16: Quantum Zeno effect: the decay of a
state becomes slower with increasing
number of measurements.

Figure shows how the evolution of the system
changes as the measurement interval decreases. We
now consider specifically the situation for short mea-
surement intervals, oy T % 1. In this limit, the cos
can be expanded as cos(X) & 1" x?/2 and eq.
can be written as

po(m) & (i1 2Dy
1 /.. (o7)*\" L o2\
ey

Using the relation

n "
tim (1" 2) =¢'¢
n

n' oo
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we can simplify the probability to

).

In the limit of almost continuous measurements, we
can write the survival probability as a function of the
total duration t = nt.

We therefore obtain an exponential decay with the
decay rate ®?7/4. The system no longer shows pre-
cession, but moves exponentially towards thermal
equilibrium. The decay rate decreases with the in-
terval between measurements. This is referred to as
the quantum Zeno effect:

In the limit of frequent measurement, the sys-
tem does not evolve.

7.4.8 Experimental example

oFt’n
4

polom) 1 exp

n a)ZT
p+(nt) = p.(t)! eXp< !

=
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Figure 7.17: Experimental test of the quantum Zeno
effect. Left-hand side: laser pulses
measure the state of the ions while they
are attempting to make a transition from
state |0#to |1# Right-hand side: calcu-
lated and measured transition probabil-
ity for increasing number of measure-
ments [81]].

These general quantum mechanical predictions can
be verified experimentally, e.g., for trapped ions
[81]. Figure shows the principle of the experi-
ment. The ions are initially in state |0# from where

an RF field drives them into state [1# The ampli-
tude of the RF field and its duration can be adjusted
such that probability for the ion to make the transi-
tion from state |0# to |1# approaches unity at time
T.

To detect if the ions have arrived in state |1# one
can use laser pulses that excite fluorescence from the
ions if they are in state |1# with a suitable calibra-
tion, the fluorescence signal can be used to measure
whether the ions are in this state. If such a laser pulse
is applied first at time 7, it finds the ions in state T
with almost unit probability. If, however, additional
measurements are made at times T; = T% fori=1..n,
the probability of finding the system in state |1#at
time 7 is reduced to

1
p(n) = 5[1" cos”(x/n)].
For n = 1,2,3,4, we obtain p = 1,%,17—6,%. In the

limit of large n, the argument of the cosine tends to
zero and

/4
cos"=$ 1, p(n)$ 0.

n
This prediction was verified experimentally by mea-
surements on two hyperfine states of the °Be™
ground state [81]], as shown in the right-hand side

of Figure

Clearly the slow-down of transition rates by mea-
surement cannot be universal. As an example, con-
sider an atom that is initially in the excited state.
A possible measurement for the excited state pop-
ulation probability is a fluorescence measurement:
as long as we do not observe a fluorescence pho-
ton from this atom, we know it is still in the excited
state. This would imply that, if we only “looked" at
the atom often enough, it would therefore be impos-
sible for the atom to decay. Similar arguments are
used to explain why the decay of the proton has not
yet been observed.

The main reason for this paradox is that the con-
cept of a quantum mechanical measurement is not
established with sufficient precision. A projection,
i.e., a reduction of the wavepacket, does not always
occur in “standard" quantum mechanical measure-
ments. If the interaction is weak (such as “looking"
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for a Buorescence photon), the reduction does not ddiis principle can be understood be considerin
cur. One important point that must be considered @gibit (=spin 1/2) in a superposition state. In an |
that a projective measurement can only occur duritigrnal Peld that splits the two states by a freque
a bnite time interval, which is the longer the weakan, it evolve as

is the coupling to the apparatus. The projection pos- | "

tulate is well suited to the SternbGerlach type experi- W (1) = --17' o! o2 | It i1/2 ’

ment, but completely unsuitable for experiments like 2

NMR.

i.e. the relative phase of the coherence increas
linearly with time,¢ = wr. If the system has evolve
for a time 7 before the refocusing pulse, the phe
¢1 = @t acquired during this time is inverted
¢1 = # wt. An additional evolution period of th
7.5.1 Refocusing same duration after the pulse generates an additi

phase factop, = ¢*®?. The sum of the two phase
In order to allow quantum information processin@ance|s,¢f+ ¢» = 0. It therefore appears as if tt
with large numbers of qubits, methods for redugsystem had never undergone an evolution. Since
ing the decoherence effects have to be developediditrue for all spins, independent of the interact
promising method to increase the lifetime, known agith the environment, the dephasing due to an in
dynamical decoupling, consists of applying a permogeneous interaction is exactly cancelled by -
odic series of inversion pulses to the quantum bitS.refocusing pulse. All phases vanish and the qu
get back into phase, forming an echo at timafter
the refocusing pulse.

1A

10 Time / ps

7.5 Dynamical decoupling

o—=3

Figure 7.19Experimental echo signal from a sil
gle electron spin of an NV center |
diamond.

7.5.2 Fluctuations

Figure 7.18Phase reversal and echo formation by
an inversion pulse applied to the qubit.In practice, refocusing never works perfectly. T
most critical assumption is that the environment
This approach to reducing decoherence was origtatic, i.e. the interaction with the environment
inally introduced in Nuclear Magnetic Resonanceme independent. In practice, there are always f
(NMR), in particular by Erwin Hahn[[82], who tuations. As a result of these Ructuations, a q
showed that ar-rotation (a NOT-gate) applied to amay experience a different interaction with the er
spin-1/2 system (a qubit) corresponds to an effectivenment after the refocusing pulse than before it
change of the sign of the perturbation Hamiltoniathis case, the phase acquired by the environme
and therefore generates a time reversal of the corieteraction does not cancel and some destructive
sponding evolution. terference remains and the echo amplitude deca
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a function of the refocusing time_[82,183]. This de-
cay contains information about the time-dependence
of the environment.

20

To explain how such a time-dependence arises, we .
introduce a simple model Hamiltonian. The free '°r=
evolution Hamiltonian, without gate operations, is

Hi=Hgsg+HEg,

. . — 2! pulses
whereH g is the environment Hamiltonian and i P
..n . . W%y Hahnecho
Ho =Y bPEBS 10 100 1000
S %’ @ Time / s

is the interaction between the system and the enfigure 7.20Decay of electron spin coherence f
ronment. Ezﬁ are operators of the environment and different numbers of refocusing pulse
bP the SE coupling constants. The ind&xuns over

all modes of the environment. The time dependenﬁ?ereby OfreezeO the evolution of the system by
originate if the environmental Hamiltoniath ; does

i o pletely isolating it from its environment. Unfortt

not commute withe?: in this caseH sz undergoes ;
_ _ z- SE 9 nately, experimental pulses are not perfect. T
a time evolution under the effect bf . have Pnite durations, they may have a frequency

A similar effect arises if the spins diffuse in an enviset, and mostimporantly, their [3ip angles differ frc
ronment with an inhmogeneous magnetic Peld. Thiee target value, typically by as much as a few
diffusion then changes the Larmor frequency of theent. The effect of such imperfections becomes n
diffusion molecular spin and the refocusing becomé@portant when a large number of gate operati
ineffective. A technique for reducing this effect wagire used, such as in dynamical decoupling.
introduced by Carr and Purcell [82,183]: Instead.
of applying a single pulse in the middle of the pe:-
riod, they applied a sequence of pulses, with separa- 100
tions between them that were short compared to the-
timescale on which the environment changes. T
same idea was introduced in the context of quantusa
information processing under the name of dynamic&
decoupling (DD)|[84]. b=
X

10

Fig.[7.20 shows that the application of refocusin
pulses effectively decouples the qubit from the enx
vironment, increasing the survival time. The more
pulses are applied (and thus the shorter the delay be-

tween the pulses), the longer the survival time of the _ _
electron spin coherence. Figure 7.21Decay times of nuclear spin cohe

ence for different numbers of refocu
ing pulses. OLongitudinal® and Otr:

e
Delay between pulses / us

7.5.3 Imperfections verseO refer to the orientation of t
spin with respect to the rotation axis
If the refocusing pulses are ideal, i.e. perfect the pulses.

rotations of zero duration, it would be possible to
keep increasing the number of refocusing pulses aAd ideal refocusing sequence works perfectly,
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dependent of the initial condition of the system
(which should be considered to be unknown). As
Fig. shows, this is not always the case. Here,
the black symbols, representing experimental data
points, show that the relaxation (=decoherence) time
of the system increases by roughly two orders of
magnitude as the delay between the pulses is re-
duced. However, a further reduction of the delay and
therefore increased number of pulses does not lead
to a further increase, but actually to a small reduc-
tion. Even more strikingly, the red symbols, which
correspond to measurements where the initial con-
dition is perpendicular to the rotation axis, indicate
that an increasing number of pulses reduces the re-
laxation time of the system. In this case, the pulses
apparently do not help, but actually destroys spin co-
herence.

This effect can be understood by considering the ef-
fect of two ! y pulses. The total propagator for two
such pulses is

il il
Uid = o Syel. Sy — 1’

i.e. the system returns to its initial state.

Ideal pulses: Longitudinal
|-| |-| initial condition
p(0) = S, B
Pi,TrSy P'i,ﬂ'Sy =1 f
Real pulses: Error has no effect
; ; ; Transverse Error accumulate:
ez(7r+6)5y 61(7r+5)5y — 205y ol it
Compensating pulses: nitial condition
By
p(0) = SyerS,

ei(7r+6)5_,, e-i(7r+6)Sy =1

Figure 7.22: Effect of pulse imperfections: If the flip
angle error is not set precisely, the error
accumulates over a 2-puls cycle. This
does not affect the qubits if their polar-
ization is aligned with the rotation axis,
but if it is perpendicular to it, the errors
accumulate. The problem can be solved
by switching the rotation axis between
opposite directions.

If we consider now two pulses whose flip angle is

I' +" where" is the flip angle error, the total prop-
agator becomes

U = & 5+ it (S5+7) = 278y

This is not a problem as long as the initial condition
is aligned with the y-axis, #(0) o< S,: in this case,
the density operator commutes with the error prop-
agator, [U-,S,] = 0, indicating that the error does
not affect the state. If, however, the initial state is
#(0) o Sy, which is equally possible, the commuta-
tor does not vanish and the error causes a rotation
of the qubit. This rotation accumulates over many
cycles and results in a loss of coherence. This is an
example of the general rule for quantum information
processing:

The quality of gate operations must be high for
arbitrary initial conditions.

7.5.4 Error compensation

The bottom left part of Fig. shows how this
problem can be solved: instead of applying all pulses
with the same sense of rotation, one switches the ro-
tation axes between the * y direction. In this case,
the propagator is

Uoo = o ) (5=") = 1,

Fig. compares the performance of this com-
pensated decoupling sequence (CPMG2) with that
of the standard uncompensated sequence (CPMG).
Clearly, the compensated sequence reduces the de-
cay rate by approx. two orders of magnitude.

7.5.5 Robust DD

For real-world operation, we have to look for gate
operations that work reliably also if the precision of
the experimental control fields is finite. Here, we
discuss two possible approaches: first we show that
it is possible to replace individual refocusing pulses
by compensated pulses that implement very precise
inversions, and then we discuss sequences that are
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Figure 7.23: Comparison of the effect of different
decoupling sequences.

inherently robust, i.e. insensitive to the imperfec-
tions of the individual pulses.

The simplest approach to make a sequence robust is
by replacing every standard pulse by a robust com-
posite pulse. The general approach to composite
pulses was discussed in section In the con-
text of dynamical decoupling, we specifically need
I -pulses that are robust against flip angle errors and
frequency offset errors. A composite ! -pulse that is
quite effective in compensating these errors simulta-
neously is the sequence

s =) = o = () =y
(7.24)

If the 5! -pulses are ideal, the sequence implements
a! rotation around the " -axis followed by a —! /3
rotation around the z axis. The phases are chosen
such that errors cancel and do not change this over-
all rotation to first order. A comparison between this
pulse and a normal rectangular pulse was shown in
section If the DD pulses are replaced by such
pulses, the sequence becomes significantly more re-
obust against pulse imperfections.

An alternative to the use of composite pulses consists
in making the decoupling sequences fault-tolerant
without compensating the error of each pulse, but
by designing them in such a way that the error in-
troduced by one pulse is compensated by the other

pulses of the cycle. The first demonstration of this
possibility is due to Maudsley [85]], who noticed that
sequences of identical pulses performed well for the
longitudinal initial condition, but not for the trans-
verse one. He suggested to alternate the phase of the
! -pulses between x and y.

The problem

The solution

XY-4 sequence

[ 11

Magnitude

o N A & ® -
' P G

number

Figure 7.24: Comparison of the effect of different
decoupling sequences.

As shown in Fig. the performance of this sym-
metrized sequence is independent of the initial con-
dition. Various schemes are known for further im-
proving the performance of this sequence.

A closely related approach is based on the robust ! -
pulse (7.24), which consists only of ! -pulses. If they
are spaced equally in time, one obtains a robust DD
sequence

KDD- = fupn (" )y o Su(t ) Su(t ) o

Fe(1) fe(M )y joim faya-

The self-correcting sequence is created by combin-
ing 5-pulse blocks shifted in phase by ! /2, such as
[KDD- - KDD- 4, /2]2, where the lower index gives
the overall phase of the block. The cyclic repetition
of these 20 pulses is referred to as the KDD sequence
[86].

7.5.6 Performance of robust sequences

Figure shows the overall error generated by
a decoupling sequence where the individual pulses
suffer from flip angle errors as well as offset errors.
Without considering the effect of the environment,
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Figure 7.25: Error tolerance of different self-

correcting sequences. The upper row
shows the calculated fidelity F for
CDD sequences, while the lower row
shows the results for XY-8, XY-16 and
KDD sequences. Each panel shows the
fidelity after 1680 pulses as a function
of flip-angle error and offset errors.
The regions where the fidelity is lower
than 0.95 are shown in white.

it shows the fidelity F after applying 1680 pulses to
the system as a function of the two error parameters.
Each panel contains the color-coded fidelity for one
of six different decoupling sequences. The best per-
formance is achieved by the KDD sequence, whose
cycle consists of 20 pulses.

Fig. compares the experimental performance
of different self-correcting sequences. The perfor-
mance of the CDD sequences always saturates or
decreases with increasing duty cycle under these ex-
perimental conditions. However, instead of saturat-
ing, the relaxation time for the KDD sequence con-
tinues to increase, as in the case of sequences with
robust pulses. The KDD sequence combines the use-
ful properties of robust sequences with those of se-
quences of robust pulses and can thus be used for
both quantum computing and state preservation.

Dynamical decoupling is becoming a standard tech-
nique for preserving the coherence of quantum me-
chanical systems, which does not need control over
the environmental degrees of freedom.

Errors + Environment

—u—CDD, (Robust)

——KDD

Figure 7.26: Experimental decoherence times for
different compensated DD sequences
as a function of the duty cycle. Ex-
periments were done with nuclear spin
qubits subjected to noise from an en-
vironment consisting of a nuclear spin
bath.

7.5.7 DD for large systems

Of course, such measures for fighting decoherence
become more important in large systems. We there-
fore have to test them also on systems with many
qubits.

Fig. shows an experimental test. The filled
squares represent experimentally measured decoher-
ence rates as a function of the number of correlated
qubits, while the curve is a fit of the experimental
data to a power law, ! K®#_ The upper part of the
figure represents similar data as that in section[7.2.6]

As shown in Fig. by the lower curve and data
points, a suitable decoupling sequence allows one to
reduce the decoherence rate by approximately a fac-
tor 50. The lower curve, labeled "Decoupled"” has al-
most the same dependence on the number of qubits
(! K94 indicating that the decoupling works just
as well for "large" quantum systems consisting of
many correlated qubits, as for individual spins.

Further reading

Decoherence is discussed in many sources deal-
ing with fundamental issues of quantum mechanics,
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Figure 7.27: Scaling of decoherence rates with the
number of qubits in the quantum
register.

such as the measurement problem and the quantum-
classical boundary. In the present context Leggett’s
summer school lecture notes [38] are particularly
useful. A compact and clear reference on quantum
error correction is [87]; [32] discusses the topic in
much more detail and from a more general perspec-
tive, with many references to original research arti-
cles. Preskill’s lecture notes [30] also contain an in-
depth discussion, pointing out relations to classical
error-correcting codes. A review on decoherence-
free subspaces and related topics is [88]].

Problems and Exercises

1. Write the projector onto the general single-
qubit state ¢|0) 4+ 1) as a linear combination
of LX,Y,Z.
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