
11 Trapped Ions and Atoms

Among the first of the systems that were suggested
for building a quantum computer was a linear trap
with stored atomic ions. Atomic ions have some at-
tractive properties for use as qubits: qubits can be
defined in ways that make decoherence very slow
while simultaneously allowing for readout with high
efficiency. To avoid perturbing these ideal proper-
ties, the ions are best isolated in space. This can be
achieved with electromagnetic traps, which arrange
electric and magnetic fields in such a way as to cre-
ate a potential minimum for the ion at a predeter-
mined point in space. Similarly, neutral atoms can
be trapped in the electromagnetic field of a standing
light wave.

Lasers are an extremely important part of experi-
ments with single ions and atoms. They are used
for

• Generating gate operations

• Reading out the results

• Initializing the qubits

• Cooling the motional degrees of freedom

• Trapping neutral atoms.

11.1 Trapping ions

11.1.1 Ions, traps and light

Earnshaw’s theorem states that static electromag-
netic fields cannot trap a charge in a stable static
position1. However, using a combination of static
and alternating electromagnetic fields it is possible
to confine ions in an effective potential.

1In the purely electrostatic case the existence of a minimum of
the electrostatic potential in a charge-free region would vio-
late Gauss’ law. See for a discussion of Earnshaw’s theorem
in a modern context.
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Figure 11.1: Two classical ion traps.

Figure 11.1 shows schematically the geometries
used in the two traditional traps, the Paul and Pen-
ning traps. Both consist of an axially symmetric set
of electrodes. The electrodes on the symmetry axis
have the same potential, while the ring has the op-
posite polarity. The resulting field is roughly that of
a quadrupole, where the field vanishes at the center
and increases in all directions.

In the case of the Paul trap, the voltage on the elec-
trodes varies sinusoidally: The electrodes generate a
potential

F(x,y, t) = (U �V cos(wt))
x2 � y2

2r2
0

.

The ion is therefore alternately attracted to the polar
end caps or to the ring electrode. On average, it ex-
periences a net force that pushes it towards the center
of the trap. In the exact center, the field is zero and
any deviation results in a net restoring force. The
Penning trap has the same electrodes, but the elec-
tric field is static: it is repulsive for the end caps. The
ions are prevented from reaching the ring electrode
by a longitudinal magnetic field.

11.1.2 Linear traps

The Paul Trap can also be made into an extended lin-
ear trap. Figure 11.2 shows the geometry used in this
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11 Trapped Ions and Atoms

Figure 11.2: Linear quadrupole trap.

design, which consists of four parallel rods that gen-
erate a quadrupole potential in the plane perpendic-
ular to them. The quadrupole potential is alternated
at a radiofrequency, and the time-averaged effect on
the ions confines them to the symmetry axis of the
trap, while they are free to move along this axis. A
static potential applied to the end caps prevents the
ions from escaping along the axis. The resulting ef-
fective potential (averaged over an rf cycle) can be
written as

V = w

2
x x2 +w

2
y y2 +w

2
z z2,

where w

a

, a = x,y,z are the vibrational frequencies
along the three orthogonal axes. By design, one has
wx = wy � wz, i.e., strong confinement perpendicu-
lar to the axis and weak confinement parallel to the
axis.

40Ca+

Figure 11.3: Strings of ions in linear traps.

Ions that are placed in such a trap will therefore pref-
erentially order along the axis. The distance between

the ions is determined by the equilibrium between
the confining potential w

2
z z2 and the Coulomb repul-

sion between the ions. This type of trap has two im-
portant advantages for quantum computing applica-
tions: it allows one to assemble many ions in a linear
chain where they can be addressed by laser beams
and the equilibrium position of the ions (on the sym-
metry axis) is field-free. This is in contrast to the
conventional Paul trap where the Coulomb repulsion
between the ions pushes them away from the field-
free point. As a result, two or more ions in a Paul
trap perform a micromotion driven by the rf poten-
tial. In the linear Paul trap, the field-free region is a
line where a large number of ions can remain in zero
field and therefore at rest.

When more than one ion is confined in such a trap,
the system has multiple eigenmodes of the atomic
motion. The lowest mode is always the center of
mass motion of the full system, in analogy to the
motion of atoms in a crystal. A change of the fun-
damental vibrational mode can be compared to the
Mössbauer effect, where the recoil from the photon
is shared between all atoms in the crystal. The higher
vibrational modes, which correspond to phonons
with nonzero wave vector, as well as the vibrational
modes that include wave vector components perpen-
dicular to the axis, will not be relevant in this con-
text.

11.2 Interaction with light

The interaction of light with atomic ions is essen-
tial for building a quantum computer on the basis of
trapped ions: it is used for initializing, gating, and
readout. We therefore discuss here some of the ba-
sics of the interaction between light and atomic ions.

11.2.1 Optical transitions

When light couples to atomic ions, the electric field
of the optical wave couples to the atomic electric
dipole moment:

He = �~E ·~µe,
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11 Trapped Ions and Atoms

where ~E is the electric field and ~
µe the atomic elec-

tric dipole moment. For the purpose of quantum in-
formation processing applications, it is important to
distinguish between “allowed" and “forbidden" op-
tical transitions. In the first case, the matrix element
of the electric dipole moment operator for the tran-
sition is of the order of 10�29 C m; in the latter, it is
several orders of magnitude smaller.

The size of the electric dipole moment determines
not only the strength of the interaction with the laser
field and thus the ease with which the ion can be op-
tically excited, it also determines the lifetime of the
electronically excited states. According to Einstein’s
theory of absorption and emission, the spontaneous
emission rate is proportional to the square of the ma-
trix element. States that have an optically allowed
transition to a lower lying state are therefore unsuit-
able for use in quantum computers, since the associ-
ated information decays too fast.

While an atom has an infinite number of energy lev-
els, it is often sufficient to consider a pair of states
to discuss, e.g., the interaction with light. Writing
|gi for the state with the lower energy (usually the
ground state) and |ei for the higher state, the rele-
vant Hamiltonian can then be written as

H2LS = �w0Sz �2w1 cos(wt)Sx.

Here, h̄w0 = Ee � Eg is the energy difference be-
tween the ground and excited state and 2w1 cos(wt)
is the coupling between the laser field (with fre-
quency w) and the atomic dipole moment. The op-
erators Sx and Sz are pseudo-spin-1/2 operators.

If the Hamiltonian is written in this way, the anal-
ogy to the real spin-1/2 system, as was discussed in
Chapter 10, is obvious. This allows us to treat two-
level transitions as virtual spins-1/2 [145]. In the in-
teraction representation with respect to the laser fre-
quency, the coordinate system “rotates" at the laser
frequency w around the z-axis of the virtual spin.
Neglecting the counter-rotating component at fre-
quency 2w1, we get the effective Hamiltonian

H r
2LS = �(w0 �w)Sz �w1Sx, (11.1)

in close analogy to the rotating frame representation
of NMR (see section 10.1.3). In optics, this is known
as the rotating wave approximation.

11.2.2 Motional effects

When an atom is not at rest, its transition frequency
is shifted through the Doppler effect:

w = w0 +~k ·~v,

where ~k is the wave vector of the laser field and ~v
the atomic velocity. In free atoms, the velocity can
have arbitrary values, with the probability of a spe-
cific velocity determined by the Boltzmann distribu-
tion. The optical spectra of ensembles of atoms are
therefore broadened and/or shifted according to their
motional state.

|e>

|g>
Frequency0

T

Figure 11.4: Energy levels of the trapped atom (left)
and the resulting spectrum (right).

In trapped ions, the motional energy is quantized.
Depending on the trap potential, the motional states
can often be approximated by a collection of har-
monic oscillators. Harmonic oscillator motion does
not shift the frequency by arbitrary amounts, but cre-
ates sidebands that are separated from the carrier fre-
quency w0 by the harmonic oscillator frequency. As
shown in Figure 11.4, the trap motion creates a set
of sidebands whose frequencies can be written as
wn = w0 + nwT , where �• < n < • is the order of
the sideband and wT is the trap frequency. Since ev-
ery motional degree of freedom creates such a side-
band pattern, the resulting spectrum can contain a
large number of resonance lines.

In all techniques suggested to date, for quantum
computing with trapped ions, the spatial coordinates
of the qubit ions play an important role either as
a qubit or as a variable used for coupling different
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qubits. If the spatial degrees of freedom are used in
the computation, the motional state of the ion must
be well controlled and initialized to a specific state,
which is usually the motional ground state. The ions
must therefore be cooled into their ground state as a
part of the initialization process [170].

11.2.3 Basics of laser cooling

The technique to bring them into the ground state
is laser cooling, which was developed in the 1980’s
[171, 172, 173, 174, 175, 176]. It relies on the trans-
fer of momentum from photons to atoms during an
absorption (and emission) process. Suitable arrange-
ments allow one to use this momentum transfer to
create extremely strong forces that push the atoms
in the direction of the laser beam. Adjusting the ex-
perimental parameters properly, these forces can be
conservative (i.e., they form a potential) or they can
be dissipative friction forces. Conservative forces
are useful for logical gate operations, while frictional
forces are useful for initialization and cooling.

E = hω
p = hk E = 0

p = 0k

E = hω
p = hk

Absorption

Experimental Situation

Figure 11.5: Photon momentum as the source of me-
chanical effects of light.

The origin of these mechanical effects of light can
be traced to the momentum h̄k that every photon car-
ries. As shown in Figure 11.5, the photon momen-
tum is transferred to the atom whenever a photon is
absorbed. During the subsequent spontaneous emis-
sion process, the recoil of the photon emission also
contributes to the mechanical effects of the light on
the atom. However, the emission is, in contrast to the
absorption process, not directed. The average effect
of all emission processes therefore vanishes.

The momentum change due to the transfer of a sin-
gle photon momentum is relatively small; it corre-
sponds to a change in the atomic velocity of a few
cm/s. As an example, we calculate the momentum
transferred by a single photon at a wavelength of 589
nm, a prominent wavelength in the spectrum of Na:

Dp =
h
l

=
6.626 ·10�34Js

589 ·10�9m
= 1.125 ·10�27 m kg

s
.

Given the mass mNa = 3.818 ·10�26 kg of the sodium
atom, this corresponds to a change in its velocity of

Dv =
Dp
mNa

= 2.95
cm
s

.

This estimate was first made by Einstein in 1917
[177] and verified experimentally by Frisch 1933
[178] with a classical light source. Since the atoms
scattered less than three photons in his experiment,
the effect was very small.

However, if an allowed atomic transition is excited
by a laser, the atom re-emits the photon within a few
nanoseconds (16 ns for Na) and is ready to absorb
another photon. It can therefore scatter up to 108

photons per second, and the momentum transferred
by them adds up to a force

F =
Dp
t

=
1.125 ·10�27 m kg

s
ns

= 7.03 ·10�20N,

corresponding to an acceleration of

a =
F

mNa
=

7.03 ·10�20N
3.82 ·10�26kg

= 1.84 ·106 m
s2 = 188000g.

This implies that an atom arriving with the velocity
of a jet plane can be stopped over a distance of a few
centimeters.

In the case of trapped ions, the situation may also be
discussed in terms of resolved motional sidebands.
Cooling is then achieved by irradiating the lower-
frequency sidebands, as shown in Figure 11.6. In re-
ality, the laser drives not only the |g,3i $ |e,2i tran-
sition, but all |g,ni $ |e,n�1i transitions for n > 0.
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|e;n> |e;0> |e;1> |e;2> |e;3> |e;4>

|g;n>
|g;0> |g;1> |g;2> |g;3> |g;4>

Figure 11.6: Schematics of sideband cooling for a
single degree of freedom.

For each absorption event, the vibrational quantum
number is reduced by one unit, since the photon en-
ergy is smaller than the energy difference of the two
internal states. The emission process occurs with
roughly equal probabilities into the different ground
states, thus not affecting the average vibrational en-
ergy. The only state that is not coupled to the laser is
the |g,0i state, since no transition with a frequency
below the carrier originates from this state. As a re-
sult, all atoms eventually are driven into this state in
the absence of heating mechanisms.

11.3 Quantum information
processing with trapped ions

Cold trapped ions were among the first candidates
for qubits (see, e.g., [179]), but it took several years
of intense experimental work to realize this potential
[180].

11.3.1 Qubits

Since the atomic ions stored in traps have a large
number of states, there are many distinct possibil-
ities for defining qubits. Since spontaneous decay
times through allowed transitions are of the order of
a few nanoseconds, the requirement of long decoher-
ence times implies that both states of the qubits must

either be sublevels of the electronic ground state or
metastable states, i.e., states where all transitions to
lower lying states are “forbidden".




 

 

 

 











Figure 11.7: Possible qubit implementation using a
metastable state in Ca+.

A typical example of a a qubit implementation is the
Ca+ ion [181]. In its ground state [Ar](4s), the single
valence electron is in the 4s orbital, which is abbre-
viated by the term symbol 42S1/2. If the electron is
excited into a 3d orbital, it has angular momentum
L = 2, and can only decay to the ground state by
emitting two quanta of angular momentum. These
quadrupole transitions are “forbidden" in the dipole
approximation, resulting in long lifetimes of the ex-
cited state. Nägerl et al. [182] therefore suggested
using the transition between the 42S1/2 ground state
and the 32D5/2 excited state as a qubit.

Apart from the computational basis states, the ion
has many other states that cannot be completely
omitted. In particular, the 32D3/2 state is important,
since it can be populated and also has a long life-
time. To bring it back into the qubit system, the 866
nm transition to the 42P1/2 state can be driven with
an additional laser. From there, the ions quickly de-
cay to the ground state.

The second common choice is to encode the quan-
tum information in sublevels of the electronic
ground state [183, 184]. Figure 11.8 shows as an ex-
ample the possible encoding of a qubit in the hyper-
fine levels of the electronic ground state of Be+. The
two qubit states correspond to the |F = 2,mF = 2i
and |F = 1,mF = 1i hyperfine states. Since the
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Figure 11.8: Possible qubit implementation using
two hyperfine states of 9Be+.

spontaneous transition rate between ground states is
very small, the lifetime is again long compared to
all relevant timescales. The transitions from the two
ground state hyperfine levels to the electronically ex-
cited state 2P1/2 are sufficiently well resolved to al-
low one to optically distinguish whether the ion is in
the |2,2i or |1,1i state.

The initialization of the qubits must bring the ion
into a specific internal state as well as into the mo-
tional ground state. While the laser cooling for
the initialization of the external state was described
above, the initialization of the internal state can be
achieved by optical pumping. The principle of op-
tical pumping is very similar to sideband cooling:
a laser drives the system in such a way that only
the desired state of the ion does not couple to the
laser, while ions in other states can absorb light, be-
come excited and return to an arbitrary sublevel of
the ground state. These absorption / emission cycles
are repeated until the ion falls into the state that does
not couple. Given enough time, all ions will there-
fore assemble into the uncoupled state. In this case,
the dissipative process that is required for the initial-
ization step is spontaneous emission.

11.3.2 Single-qubit gates

The way to generate (pseudo-)spin rotations that cor-
respond to single qubit gates depends on the specific
choice of the qubit states. If the two states encod-
ing the qubit are connected by an optical transition,
it is possible to apply laser pulses that have the same

effect as RF pulses acting on spin qubits. The corre-
sponding Hamiltonian (11.1) has the same structure
as that of a spin-1/2. Since the spatial separation of
the ions is typically of the order of 10 optical wave-
lengths, it is possible to use tightly focused laser
beams aimed at individual ions to separately address
the qubits [14]. While the optical transitions used for
such qubits must be “forbidden", the tightly focused
laser beams that are required for addressing qubits
individually provide sufficiently high Rabi frequen-
cies for efficient excitation.

If the qubit is defined by two hyperfine states that are
connected by a magnetic dipole transition, the situ-
ation is even more directly related to magnetic reso-
nance. In this case, the transition between the two
qubit states is a magnetic dipole transition, which
can be driven by microwave fields [185]. Since
the wavelength of microwave radiation is large com-
pared to the distance between the ions, microwaves
will interact with all qubits simultaneously. Address-
ing of individual qubits therefore requires a magnetic
field gradient to separate the transition frequencies of
the ions.

|0>

|1>

|aux>

Figure 11.9: Raman excitation of a hyperfine qubit.

The second possibility for addressing hyperfine
qubits is to use Raman laser pulses. For this pur-
pose, one uses two laser fields [186], whose fre-
quency difference matches the energy level separa-
tion of the two qubit states. The laser frequency is
close to a transition to an auxiliary state. Choos-
ing an appropriate set of parameters (frequencies,
field strengths), it is possible to generate laser pulses
that effectively drive the transition between the two
qubit states, with negligible excitation of the auxil-
iary state [183].
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11.3.3 Two-qubit gates

Two-qubit gates that can form the basis of a universal
quantum computer, require, in addition to the single-
qubit operations, an interaction between qubits. In
the case of trapped ions, the main interaction is
the Coulomb repulsion between neighboring ions,
which are separated by a few micrometers in typical
traps. This interaction can be utilized for two-qubit
operations in different ways, depending on the qubit
implementation.

The Coulomb repulsion between the ions couples
their motional degrees of freedom. As in a solid, the
motion of ions in a trap is best described in terms of
eigenmodes that involve all ions. This quantized mo-
tion is often involved in quantum information pro-
cessing. Initial demonstrations of quantum informa-
tion processing used the lowest two states of the har-
monic oscillator as a qubit [183], and other imple-
mentations and proposals involve them as an inter-
mediate bus-qubit.

|00>
|01>

|10>
|11>

|00>
|01>

|aux>

|10>
|11>

Phase gate SWAP

Figure 11.10: Selective laser pulse to generate a
phase shift of state |11i (left) and a
SWAP operation (right).

We therefore first discuss a two-qubit gate that uses
the internal degrees of freedom of a 9Be+ ion as the
target qubit and the harmonic oscillator motion as the
control qubit of a CNOT gate [183]. Figure 11.10
shows two examples of simple two-qubit gates that
can be realized by such a scheme. The notation |ab i
refers to the internal state a and the motional state b .

In the first example, resonant radiation that couples
only the state |11i to an auxiliary state executes a
2p pulse. As in any two-level system, the two-level
system consisting of |11i and |auxi acquires a phase

eip = �1 by the pulse. Since the other states are
not affected, the overall effect of the pulse on the
computational basis states is

P4 =

0BB@
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 �1

1CCA .

This phase gate can be combined with two p/2
pulses into a CNOT operation [183]. Another im-
portant two-qubit gate, the SWAP operation, can be
generated by a p pulse on the red sideband (see Fig-
ure 11.10).

While motional degrees of freedom are not ideal as
actual qubits, they appear to be useful for execut-
ing two-qubit gates between ions: A two-qubit gate
between ions j and k is executed by first swapping
the information from ion j into the oscillator mode,
executing the two-qubit gate between oscillator and
ion k, as described above, and subsequently swap-
ping the information from the oscillator back to ion
j. Since the harmonic oscillator motion involves all
ions, this procedure works for any pair of ions, irre-
spective of their distance.

11.3.4 Readout

One of the important advantages of trapped ion
quantum computers is the possibility of optically
reading out the result with a very high selectivity and
success probability. A photon from a laser focused
to an ion and tuned to an allowed optical transition
is absorbed with almost 50

probabilityandthephotonisre�emitteda f tertypically10ns.I f thephotoniscollectedandsenttoanappropriatedetector,suchasanavalanchephotodiode, itcanbedetectedwithaprobabilityo f 0.5�0.9.Sincethecollectione f f iciencyo f thedetectionsystemisonlya f ew

, however, this is still not sufficient. It is therefore
necessary to repeat the absorption-emission process
several thousand times to obtain an unambiguous
signature of the state of the qubit. These repetitions
must be performed without chaning the state of the
qubit. This can be achieved is the laser frequency is
tuned to an optical cycling transition from the state
that is to be detected, focuses it on the ion to be mea-
sured, and detects the fluorescence emitted.
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weak
transition

strong cycling
transition

F=2

F=1

Figure 11.11: Optical readout of a single qubit: the
left-hand part shows the relevant states
and transitions, the right-hand part an
example of a cycling transition.

The term “cycling transition" means that the state
to which the ion is excited can only fall back to
the particular ground state from which it was ex-
cited. Figure 11.11 shows an example of such a
cycling transition between an electronic state with
total angular momentum F = 1 and a second state
with F = 2. If circularly polarized light couples to
the |F = 1,mF = 1i ground state, it excites the atom
into the |F = 2,mF = 2i excited state. The selection
rule DmF = ±1 does not allow for transitions to any
ground state but the |F = 1,mF = 1i state.

For suitable transitions, up to 108 photons can be
scattered. If the detection system has a 1% collec-
tion efficiency, this yields a very reliable decision
whether the ion is in the particular state or not.
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Figure 11.12: Fluorescence of a single Ba ion. The
quantum jumps indicate changes of
the internal quantum state of the ion
[187].

Figure 11.12 shows an example for an observed sig-
nal [187]: when the single Ba ion is in the observed
state, it scatters approximately 2200 photons per sec-
ond; the background rate is less than 500 photons per
second. As shown in the example data, the fluores-

cence level is an excellent indicator if the ion is in the
state that is being measured. The sudden drops in the
fluorescence level indicate that the ion jumps into a
different state, which is not coupled to the transition
being irradiated. These transitions are referred to as
“quantum jumps" .

The detection scheme sketched here only provides a
measure of the atom being in state |0i; a similar mea-
surement of state |1i is only possible if that state is
also part of a cycling transition. The complementary
measurement of the atom being in state |1i can be
achieved in different ways. The first possibility is to
take the absence of a result for the state |0i measure-
ment as a measurement of the atom being in state |1i.
This is possible since the system (under ideal condi-
tions) must be either in state |0i or state |1i. A sec-
ond possibility is to perform first the measurement
of state |0i and then apply a logical NOT operation
and a second measurement of state |0i. Since the
NOT operation interchanges the two states, a subse-
quent measurement of the state |0i is logically equiv-
alent to a measurement of state |1i before the NOT
operation.

11.4 Experimental implementations

11.4.1 Systems

One of the most popular ions for quantum informa-
tion studies is the Ca+ ion [182, 94]. For laser cool-
ing, excitation of resonance fluorescence and opti-
cal pumping of the ground state, different transitions
are used. The experiment therefore requires laser
sources at the wavelengths 397 nm, 866 nm, and 854
nm. If the E2 transition between the ground state
and the metastable D5/2 state is used as the qubit, a
fourth laser with a wavelength of 729 nm is required.
Its frequency stability must be better than 1 kHz.

The long lifetimes make hyperfine ground states
very attractive for quantum information processing
applications. Examples for such systems are the
171Yb+[185] and 9Be+ ions [186].

The linear Paul trap was mostly used for quantum
information processing, but some variants are also
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being tested. Tight confinement of the ions is advan-
tageous as it increases the separation between the vi-
brational levels and therefore facilitates cooling into
the motional ground state. In addition, the vibra-
tional frequencies are involved in the logical oper-
ations. Accordingly higher vibrational frequencies
imply faster clocks.

3 µm

Figure 11.13: Two ions in a small elliptical trap
[170].

Tight confinement can be achieved mainly by minia-
turization of the traps. For the example shown in
Figure 11.13, the smallest trapping frequency is 8.6
MHz [170]. However, miniaturization is not with-
out difficulties: it increases, e.g., the effect of un-
controlled surface charges in the trap and it makes
addressing of the ions more difficult.

11.4.2 Some results

The earliest quantum logic operation was reported
by the group of Wineland [183]. They used a
9Be+ ion where one of the qubits was a pair
of internal states, two hyperfine sublevels of the
electronic ground state, the |F = 2,mF = 2i and
|F = 1,mF = 1i states with an energy difference of
1.25 GHz. This qubit represented the target qubit.
The control qubit was defined by the two lowest har-
monic oscillator states, which were separated by 11
MHz. A sequence of three Raman pulses was used
to implement a CNOT gate.

Figure 11.14 shows the populations of the four pos-
sible states of the system before (front row) and af-
ter (back row) the application of the CNOT gate.
The control qubit, which is shown in white, does

Figure 11.14: Experimental test of the CNOT gate
on single 9Be+ ion [183].

not change during the CNOT operation. The target
qubit, shown in black, remains also roughly constant
when the control qubit is in the |0i state (shown in
the first two columns) but changes when the control
is 1 (3rd and 4th column).

Other achievements with this system include cooling
of two ions into the vibrational ground state and their
entanglement [170, 186]. For this purpose the au-
thors did not address the ions individually, but modi-
fied the effective Rabi frequency through fine-tuning
of their micromotion. The resulting state was not a
singlet state (but close to it) and the scheme is not
directly applicable to quantum computing.

Using Ca+ ions in a linear trap, optical addressing
of individual ions was demonstrated [188], and in a
chain of three ions, coherent excitation of ions [189].

The two-qubit Cirac–Zoller gate[127] was realized
on two trapped Ca+ ions [14] by tuning the laser
to a blue-shifted sideband, where, in addition to the
electronic transition of the given ion, the collective
motion of the two ions was also excited. Single-
qubit gates were realized by a laser beam whose fre-
quency was resonant with the quadrupole transition
and which was focused so tightly that it interacted
only with a single ion. The final state was measured
by exciting the S–P transition of the trapped ions and
measuring the fluorescence. Since the ions can only
be excited when they are in the S state, high fluores-
cence counts are indicative of the qubit being in the
|0i state.
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Figure 11.15: CNOT gate implemented on two
trapped Ca+ ions [14].

A two-qubit gate has also been implemented on two
trapped beryllium ions by Leibfried et al. [15]. They
used two hyperfine states of the electronic ground
state to store the quantum information. In this ex-
periment, the motion of the ions was excited by two
counterpropagating laser beams, whose frequencies
differed by 6.1 MHz. As a result, the ions experience
a time-dependent effective potential that resonantly
excites the oscillatory motion in the trap. The pa-
rameters of the excitation were chosen such that the
ions were not directly excited, but instead their quan-
tum states were transported around a closed loop in
parameter space. As shown by Berry [190], the pa-
rameters of such a circuit can be chosen in a way that
the transported states acquire a net phase. Leibfried
et al. used this procedure to implement a phase gate
on their system. Since the laser beams interact with
both ions, additional lasers will be required for gen-
erating specific single-qubit gates in this system. In
a similar system, a Grover-type search was imple-
mented [191].

While these demonstration experiments were done
on a small number of ions, proposals exist how the
number of ions could be scaled up, particularly by
integrating the trap electrons on a chip [117]. Opera-
tion of such a microfabricated trap was demonstrated
for a single ion [192].

11.4.3 Challenges

One of the biggest problems of ion traps is that the
ions, as charged particles, are relatively sensitive to
stray fields in the vicinity. These fields can adversely
affect the motion of the ions and, if they are time
dependent, they heat the ions. Typical heating times
are of the order of 1 ms [170] for two ions in a trap.
With increasing numbers of ions, heating rates are
expected to increase so that not only the number of
particles that couple to these stray fields, but also the
number of degrees of freedom that can be driven,
increases.

Like all other implementations of quantum comput-
ers, ion traps will have to demonstrate that they can
perform a sufficiently large number of gate opera-
tions. As the number of ions in a trap increases, it be-
comes more and more difficult to control the ions. In
particular, the trap frequency (i.e. the confinement)
decreases, while the number of motional modes in-
creases and heating effects become more effective.
It appears thus unlikely that individual traps will be
able to accept a sufficiently large number (i.e., hun-
dreds) of ions.

Several solutions to this problem have been pro-
posed, such as storing the ions in multiple traps. It
has been suggested [193] that it should be possible
to couple these separate traps through photons, thus
creating an arbitrarily large quantum register with a
linear overhead. As a first step towards this goal,
quantum interference between two remote trapped
174Yb+ ions was reported [194]. A similar ap-
proach is the so-called quantum charge-coupled de-
vice (QCCD), a microfabricated array of electrodes
that can trap the ions and shift them around between
"interaction-" and "memory-"regions [117].

Addressing of qubits by lasers must be achieved in
the far-field diffraction-limited regime, where the
separation between the ions must be large compared
to an optical wavelength. This requirement sets a
lower limit on the distance between the ions and
therefore on the strength of the axial confinement
potential. Since this potential also determines the
vibrational frequency that enters the clock speed, it
is obvious that ion traps cannot be operated with
arbitrary speed. While direct microwave pulses
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can distinguish between the ions through their fre-
quency separation in an inhomogeneous magnetic
field [185], it is not clear that this will allow for sig-
nificantly tighter confinement.

11.5 Neutral atoms

Neutral atoms can also be used as qubits [195].
Compared to trapped ions, they offer potentially
lower decoherence rates, since their interactions with
the environment are weaker. For the same reason,
neutral atoms are more difficult to trap, store and ma-
nipulate.

11.5.1 Trapping neutral particles

The first prerequisite for using neutral atoms as
qubits is a means to control their position and veloc-
ity. Since electrostatic forces cannot be used, one has
to resort to electromagnetic waves that interact with
the induced dipole moment of the atoms and / or to
magnetic fields that interact with the static magnetic
dipole moment of the atoms.

For quantum computing applications, the main tool
for generating mechanical forces acting on atoms are
laser beams. The effect can be understood in sim-
ple terms by considering the potential energy surface
generated by the laser field. Starting from the classi-
cal expression for the energy of an electric dipole µe
in an electric field E,

U = �~E ·~µe,

we calculate the force acting on the atom as

F = �~—U = ~—(~E ·~µe).

In the absence of saturation, the induced dipole mo-
ment ~

µe increases linearly with the strength of the
field, ~

µe µ ~E, and the potential is thus proportional
to the square of the field strength.

The sign of the potential depends on the difference
between the laser frequency and the atomic transi-
tion frequency: For a red-detuned laser (i.e. laser
frequency smaller than the transition frequency), the
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Figure 11.16: Effect of laser-detuning with respect
to the optical resonance frequency: for
a red-detuned laser, the atomic dipole
oscillates in phase with the laser field
and the atoms are pulled into the high
field region. For a blue-detuned laser,
the induced dipole is out of phase and
the atoms are pushed out of the areas
of high laser intensity.

atomic dipole oscillates in phase with the laser field,
~
µe ·~E > 0 and the energy becomes negative. In this
case, the atom is pulled into the region of maxi-
mal field, where its potential energy is minimal. In
the case of a blue-detuned laser, the atomic dipole
is out of phase with respect to the field, the energy
becomes positive and the atom is pushed out of the
high-field region.

A simple example of a laser-based trap for neu-
tral particles is a tightly focused laser beam. Such
traps were initially used for the manipulation of
neutral atoms, but also for macroscopic particles
[196, 174, 197]. The depth of the trap (i.e. the max-
imum kinetic energy that a particle can have without
escaping from the trap) is determined by the laser in-
tensity and the detuning of the laser frequency from
the atomic resonance: the strength of the induced
dipole moment decreases linearly with the frequency
difference. While it would therefore be advanta-
geous to tune the laser close to the resonance, this
would also cause absorption. In the context of quan-
tum information processing, however, absorption of
light from the trapping laser must be avoided since
this would cause decoherence. One therefore uses a
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large detuning and high laser intensity.

A suitable geometry for trapping neutral atoms for
quantum computing is a standing wave generated by
superimposing two counterpropagating laser beams.
This generates a linear sequence of potential min-
ima, separated by half of the laser wavelength. An-
other possibility is an array of tightly focused laser
beams [198, 199]. To make such a scheme scalable,
the different foci can be generated by microlenses,
either in one or two dimensions [200].

11.5.2 Manipulating neutral particles

A trap can be filled, e.g., by placing it directly in
a sample of cold atoms. However, such a process
will always generate a random filling of the different
minima of the trap, which is not compatible with the
requirements of quantum information processing. If
the traps are small enough, the interaction between
the atoms reduces the probability of filling the trap
with more than one atom [201]. In an array of such
traps, a parameter range exists, in which an ensem-
ble of cold atoms will preferentially occupy every
microtrap with a single atom [202]. This regime is
called a Mott insulator state and may be used to cre-
ate quantum registers if the separation between the
microtraps is in a range suitable for the separation of
qubits.

If the separation between the microtraps is smaller
than the required distance between the qubits or if
the fluctuations of the populations are too large, ac-
tive control of the populations is required. For a
linear trap, this was demonstrated experimentally
[203, 204] by combining the trapping laser with a
second standing wave trap, at a right angle to the
quantum register.

For these experiments, it is necessary to shift the trap
potential. This can be achieved in one dimension
by shifting the phase of the counterpropagating laser
beams that form the standing wave [205]. Shifting
the phase of one beam by f shifts the standing-wave
pattern, i.e. the trap potential, by

d = f

l

4p

,

where l is the laser wavelength. If the phase shift
is time-dependent, i.e. realized by a frequency shift
of one of the laser beams, this results in a linear mo-
tion of the trap potential. Acceleration can be imple-
mented by a frequency chirp.

Laser-optical traps are in general state-selective: de-
pending on the internal state of the atom, the inter-
action can be strong or weak, and the atoms can be
confined to or expelled from regions of high laser in-
tensity. This effect must be taken into account when
gate operations are applied that change the internal
state of the atoms. The state-selectivity can also be
used, to specifically manipulate subsets of the atoms
that are in specific internal states.

11.5.3 Gate operations

Single qubit gate operations can be performed on
neutral atoms in much the same way as on atomic
ions, using laser pulses with appropriate wavelength
and polarization. The qubit states will typically be
hyperfine sublevels of the electronic ground state.
Transitions between them can be excited either by
Raman laser pulses or by microwave pulses [206,
207].

For two-qubit operations, a state-dependent interac-
tion must be present between the different qubits. In
contrast to trapped ions, neutral atoms do not expe-
rience Coulomb forces. They can, however, inter-
act by electric or magnetic dipole couplings, which
depend on their internal state. This interaction is
of course significantly weaker than the Coulomb in-
teraction, and has a shorter range. Nevertheless, it
appears possible to use these interactions, and the
shorter range may even prove beneficial, since it re-
duces unwanted long-range interactions.

The strength of the interaction between qubits can be
controlled, e.g., via the distance between them. This
required independent trapping of two subensembles,
e.g. by using two dipole traps with different polar-
izations, such that one trap represents the dominant
interaction for atoms in one internal state, while the
orthogonal polarization dominates for the other state
[208]. The two potentials have the same periodic-
ity but are displaced with respect to each other, and
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the displacement may be controlled. Thus, atoms
in different spin states may be brought into con-
tact with each other in a well-defined way and for
a well-defined time. If the time-dependence of the
interaction is properly adjusted, the overall effect of
such a controlled collision between cold atoms gen-
erates an entangling quantum logical gate operation
[209, 210]. The strength of the interaction and there-
fore the speed of the gate operations can be increased
significantly if the atoms are briefly promoted to a
highly excited Rydberg state [211].

Another possibility for controlling the coupling be-
tween atoms is to bring them into optical resonators.
If two atoms interact with the same resonator mode,
they experience an indirect interaction with each
other [212]. Alternatively, the atoms can be put into
separate optical resonators, which are then coupled
to each other, e.g. through an optical fiber [193].
These schemes involve some degree of population
of electronically excited states. Accordingly, a ma-
jor challenge for their implementation is the need
to avoid spontaneous emission, which destroys the
quantum coherence in these systems.

11.6 Interacting atoms in optical
lattices

In a pioneering experiment, Greiner et al [202],
following a theoretical suggestion of Jaksch et al.
[213], observed a “quantum phase transition from a
superfluid to a Mott insulator in a gas of ultracold
atoms”, as the title of the paper says. The paper
demonstrated for the first time that it is possible to
construct physical realizations of theoretical models
for condensed-matter systems with adjustable val-
ues of the model parameters and without many of
the complications present in real-world condensed-
matter systems. A lot of activity followed, both ex-
perimental and theoretical. The phenomena and the
tools employed in their study have been discussed
in a number of reviews of varying level, perspective,
and length [214, 215, 216, 217, 218].

Atoms in optical lattices thus are excellent illustra-
tions of Feynman’s [4] concept of using quantum

systems to simulate other quantum systems. It also
seems possible to construct gates, initialize qubits
and perform other operations essential for the im-
plementation of universal quantum computation. A
significant drawback, however, remains the lack of
individual adressability of the atoms stored in an op-
tical lattice.

11.6.1 Interacting particles in a periodic
potential: The Hubbard model

For a discussion of the Hubbard model, we need a
few basic notions from the theory of crystalline con-
densed matter. In ordinary solids the electrons move
in a periodic potential generated by the ion charges.
The interaction between electrons is often neglected
or treated implicitly in some form of effective-field
approximation unless it is absolutely necessary to
proceed otherwise. The interatomic distances in a
solid are of the order of the atomic radius, which
leads to overlap between electronic wavefunctions
of neighboring atoms, to chemical bonding, and, un-
der suitable conditions, to the ability of electrons to
move around in the crystal. In an “artificial solid”
of atoms in an optical lattice this is different: the
lattice constant (the distance between neighboring
potential wells) is given by the light wavelength,
lL ⇡ 10�6m, much larger than the typical size of an
atom, about 10�10m. All short-range variations in
the interatomic potential can thus be neglected when
we discuss effects of the interatomic interactions in
an optical lattice. Furthermore, the electrons in a real
solid are inevitably spin-1/2 fermions, whereas an
optical lattice can be populated with either bosonic
or fermionic atoms.

Before discussing interatomic interaction effects,
however, we have to understand the behavior of a
single atom (or, equivalently, of a number of non-
interacting atoms) in a D-dimensionally periodic po-
tential of the form

V (~r) = V0

D

Â
i=1

sin2 kLri. (11.2)

The potential is generated by superposing D
standing-wave laser beams of wavenumber kL =
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2p/lL in orthogonal directions, thus creating a sim-
ple cubic (or square, or one-dimensional) lattice of
potential minima with lattice constant a = lL/2. The
potential strength V0 is given by the intensity of the
laser beam. As the intensity varies avross the beam,
(for example in a Gaussian shape with maximum in-
tensity in the center of the beam), V0 should be con-
sidered weakly position-dependent. In addition, V0
may also vary along the beam due to focusing ef-
fects. The spatial variation of V0, though necessary
to keep the atoms from moving out of sight, will be
neglected.

The motion of a free particle is completely charac-
terized by the momentum ~p = h̄~k, and the particle’s
wave function is a plane wave

y~k(~r) =
1p
W

ei~k·~r, (11.3)

where W is a normalization volume. The energy of
the particle is

e~k =
h̄2k2

2m
. (11.4)

In an optical lattice the laser frequency is tuned to
be roughly (but not precisely) euqal to a transition
frequency of the atom; the emission or absorption
of a photon will thus be accompanied by a kinetic
energy of recoil

ER =
h̄2k2

L
2m

. (11.5)

A periodic potential acting on a free particle changes
both wave function and energy. Instead of a plane
wave (11.3) the wave function becomes a modulated
plane wave, or Bloch function,

y~k(~r) = u~k(~r)e
i~k·~r, (11.6)

where the function u~k(~r) (the “Bloch factor”) has the
periodicity of the potential V (~r) (11.2). The disper-
sion relation (energy-momentum relation) e~k (11.4)
changes gradually as the potential strength is slowly
increased. For very weak potential e~k essentially
keeps its free-particle form (11.4); however, it turns
out to be convenient to write it in the form

e~k,~g =
h̄2

2m
(~k +~g)2, (11.7)

where ~g is a vector of the reciprocal lattice, defined
by requiring that the plane waves ei~g·~r have the pe-
riodicity of the lattice (or the potential V (~r)). In the
simple cubic case, all components of every ~g are in-
teger multiples of 2p

a = 4p

lL
. In the dispersion (11.7)

~k is then restricted to the first Brillouin zone, the re-
gion of reciprocal space (~k space) closer to ~g =~0
than to any other ~g. In the simple cubic case that is
the cube [�p/a,p/a]3. In e~k,~g then ~g classifies dif-
ferent branches of the dispersion relation, leading to
different energy bands . The lowest energy band ob-
viously is the one with ~g =~0. At the Brillouin zone
boundary, for example at~k = (p/a,0,0), the ~g =~0
and~g = (�2p/a,0,0) bands are degenerate. Degen-
erate perturbation theory shows that the degeneracy
is lifted by a weak potential V0. The formerly de-
generate energy levels are pushed away in opposite
directions and an energy gap is created. The set of
energy bands and gaps is called the band structure,
and is an important means in understanding the be-
havior of crystalline condensed matter; compare, for
example [219, 220] for details. Note that for suffi-
ciently weak potential strength V0 the maximum en-
ergy of the lowest band is of the order of

h̄2

2m

⇣
p

a

⌘2
=

h̄2

2m

✓
2p

lL

◆2

=
h̄2k2

L
2m

= ER. (11.8)

The bandwidth of the lowest energy band for “nearly
free” particles is thus equal to the recoil energy
(11.5).

The Hamiltonian for non-interacting fermions or
bosons in an optical lattice can now be written in the
occupation number (or “second quantization”) for-
malism:

H = Â
~k,~g

e~k,~gc†
~k,~g

c~k,~g , (11.9)

where c†
~k,~g

( c~k,~g ) is the creation (annihilation) oper-
ator for a particle in a single-particle energy eigen-
state with quantum numbers~k and ~g. The operator
n~k,~g = c†

~k,~g
c~k,~g is the occupation number operator for

that eigenstate. (Note that the Bloch functions y~k
and the Bloch factors u~k in (11.6) should also bear
~g or some other appropriate band index as ~k is re-
stricted to the first Brillouin zone.)
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Let us now discuss the effects of interatomic interac-
tions in an optical lattice. Since typical interatomic
distances are comparable to lL and thus very large
compared to atom sizes, the interatomic potential es-
sentially only acts through its long-range part which
can be parametrized in terms of the scattering length
aS:

Vint(~r �~r0) =
4p h̄2

m
aSd (~r �~r0). (11.10)

In order to treat this short-range potential, it is con-
venient to use a basis set of localized single-particle
wave functions instead of the Bloch functions (11.6)
extending over the whole “crystal”. This basis set is
given by the Wannier functions [219, 220]

wn(~r �~l) =
1p
N Â

~k

e�i~k·~l
yn~k(~r). (11.11)

Here, N is the number of lattice sites~l in the system
(equal to the number of ~k vectors in the first Bril-
louin zone) and n is an index indicating the band
of interest. (Labeling bands by the reciprocal lattice
vectors~g is convenient only close to the free-particle
case.) Each Wannier function is centered around a
lattice site~l, and decays with growing distance from
~l. If the potential wells of the optical lattice are very
deep and well separated from each other (that is, for
large V0) the Wannier functions for the lowest en-
ergy bands are the lowest energy eigenstates of a sin-
gle potential well (similar to orbitals of an isolated
atom), and the Bloch functions are linear combina-
tions of atomic orbitals.

Denoting the creation and annihilation operators for
particles in a Wannier state by c†

~ln
and c~ln, respec-

tively, the Hamiltonian of non-interacting particles
may be written as

H = Â
~l,~l0

t~l�~l0nc†
~ln

c~l0n , (11.12)

where the “hopping elements” t~l�~l0n are given by

t~l�~l0n =
1
N Â

~k

e~knei~k·(~l�~l0). (11.13)

Indices labeling spin or other internal degrees of
freedom have been suppressed. The formal expres-
sion (11.13) for the hopping elements can be rewrit-
ten in terms of the Wannier functions at lattice sites

~l and ~l0. For the large-V0 case the Wannier func-
tions are well localized within each potential min-
imum and the hopping elements will be negligible
except for~l and~l0 nearest neighbors. If the Wannier
functions are isotropic, all nonvanishing hopping el-
ements will have the same value, which we call �tn.
The non-interacting particles then are described by
the energy bands

e~kn = �2tn
D

Â
i=1

coskia. (11.14)

In the same spirit, the interaction between atoms via
the potential (11.10) can be discussed. The interac-
tion term of the Hamiltonian then contains a sum of
terms, each with four electron creation and annihi-
lation operators and an integral involving Wannier
functions located at four lattice sites. From the lo-
calization properties of the Wannier functions it is
then clear that the dominant term is the one where
all Wannier functions are located at the same lattice
site. Neglecting all other terms, the interaction is
given by the single value

U =
4p h̄2

m
aS

Z
d3r |wn(~r)|4. (11.15)

Since we focus on a single band, the band in-
dex n can be omitted. The total Hamiltonian de-
pends on the statistics of the atoms involved. If
the atoms are spin-half fermions (with internal quan-
tum number s =",#) we obtain the Hubbard model
[221, 222, 223] in its original form

H = �t Â
~l,~l0,s

c†
~ls

c~l0s +U Â
~l

n~l"n~l# (11.16)

(~l,~l0 nearest neighbors), where n~ls := c†
~ls

c~ls is the
number operator. The model (11.16) and its many
extensions are popular in solid-state physics for
modeling the electron correlation effects believed to
be important in magnetism, metal-insulator transi-
tions, and high-temperature superconductivity. If the
atoms are bosons (all in the same internal atomic
state) the Hamiltonian is known as the bosonic Hub-
bard model

H = �t Â
~l,~l0

c†
~l

c~l0 +
U
2 Â

~l

n~l(n~l �1), (11.17)
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originally [224] employed to describe superfluids in
porous media or granular superconductors.

In contrast to the situation in real-world condensed
matter systems modelled by Hubbard-type Hamil-
tonians, the parameter values t and U for atoms in
an optical lattice can be easily tuned by varying the
laser field strength V0 in (11.2). If V0 increases,
the potential wells get steeper and narrower and the
wave functions get compressed, so that U (11.15)
increases. Approximating the potential well by a
D-dimensional paraboloid and the wave function by
the appropriate oscillator ground state, one obtains
U ⇠ V D/2

0 .

! Problem

By the same mechanism the overlap between wave
functions in neighboring potential wells will de-
crease as Vo grows, and hence the nearest-neighbor
hopping amplitude t will decrease exponentially.
The ground-state properties of the Hubbard model
depend only on the ratio U/t and thus on the laser
field strength V0.

11.6.2 (Observing) The Mott-Hubbard
transition

In the experiment of Greiner et al. [202] ultracold
bosonic 87Rb atoms were trapped in an optical lat-
tice produced by a laser with lL = 852nm. The recoil
energy (11.8) then is ER ⇡ kB ·0.15µK and the trap-
ping potential was V0 . 22ER. Non-interacting free
(V0 = 0) bosons at zero temperature will condense
into the lowest plane-wave state (11.3), with~k =~0.
The situation does not change decisively if a weak
interatomic interaction and a weak lattice potential
are present: the state remains a macroscopically co-
herent (superfluid) many-boson state.

With growing strength of the lattice potential V0, the
single-particle states become progressively localized
and the repulsive interaction U dominates the Hamil-
tonian (11.17) more and more. If the total number of
particles is small enough, every lattice site (or po-
tential well) contains at most one atom. For strong
enough V0 each atom will be strongly localized in
one potential well and will not enjoy enough overlap

to its neighbors to develop long-range phase coher-
ence of the wave function. If every potential well
contains exactly one atom2, further atoms can only
be added at the price of an excitation energy U per
atom. The same energy gap also prevents the for-
mation of doubly occupied sites (and accompanying
vacancies) which would be needed to achieve par-
ticle transport. The resulting state is obviously in-
compressible and, thinking in terms of the original
(electronic) Hubbard model, insulating. Therefore it
is known as the Mott (-Hubbard) insulator state.

The transition between the superfluid and Mott in-
sulating states was demonstrated in a time-of-flight
experiment [202]. For small or moderate potential
strength V0 all bosons convene in the lowest-energy
extended Bloch state in a coherent manner. As the
Bloch state is a periodically modulated plane wave
(11.6) it contains Fourier components with different
~g values, with ~g =~0 dominating as V0 goes to zero.
In the experiment the optical potential is switched
off suddenly and the atoms are allowed to expand
freely. The Fourier components with different~g sep-
arate spatially according to their different propaga-
tion speeds. After a fixed expansion time an absorp-
tion image is taken. The absorption images of Figure
11.17 therefore map directly the distribution of the
atoms in reciprocal space.

For free atoms, (V0 = 0) the lowest-energy Bloch
state is an unmodulated ~k = ~0 plane wave. The
corresponding absorption image in Figure 11.17.a
therefore shows a single spot in the center. As V0
grows, additional Fourier components enter the low-
est Bloch state and become visible in the absorption
image, which develops into a two-dimensional pro-
jection of the reciprocal lattice (Figure 11.17 b,c,and
d). However, upon further growth of V0 the recipro-
cal lattice spots fade away again, their intensity be-
ing soaked up by a big central blob. That blob (Fig-
ure 11.17 g and h) is witness to the fact that the state
has evolved into one where each potential minimum
houses one atom, with no phase relation between
neighboring atoms and hence no interference visi-
ble. The large extent of the central absorption spot
in reciprocal space reflects the localization of each

2The situation is similar for any other integer number of atoms
per site.
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atom in real space. This shows clearly the change in
the nature of the ground state as the ratio U/t is var-
ied. The expected change in the nature of the low-
energy excitation spectrum from gapless in the su-
perfluid state to gapped in the Mott insulating state
could also be observed [202] by analyzing tunneling
between neighboring potential wells which are ener-
getically displaced with respect to each other in an
applied external field.

Figure 11.17: Absorption images reflecting the
Fourier component structure of the
many-particle wave function of 87Rb
atoms in an atomic lattice of strength
V0. Images were obtained after
switching off the lattice potential
suddenly and allowing atoms to
expand for 15 ms. Potential strengths
V0 in units of the recoil energy ER are
a:0, b:3, c:7, d:10, e:13, f:14, g:16,
and h:20 [202].

Fermionic atoms in optical lattices have also been
studied. Köhl et al. [225] stored a large number of
40K atoms in a three-dimensional simple cubic lat-
tice and obtained absorption images after switching
off the potential and allowing the atoms to expand
ballistically. As the Pauli principle strictly forbids
double occupation of single-particle energy levels,
the fermionic 40K atoms fill up the available Bloch
states (11.6) up to the Fermi energy. The surface
in ~k space which separates occupied states (at low
energy) from empty states (at high energy) is called
the Fermi surface. For a simple cubic optical lat-
tice potential of the form (11.2) the Fermi surface is
spherical at low density, but less so at higher den-
sity. For a completely filled band the Fermi surface
is equal to the boundary of the first Brillouin zone.

The energy gap to the next higher band then is the
minimum energy for a single-particle excitation. For
electrons in a solid that situation corresponds to an
insulator (or a semiconductor, if the energy gap is
small enough). In contrast to the interaction-induced
Mott insulator discussed above, the present case is
termed band insulator and obviously does not rely on
interaction effects. In the optical-lattice experiment
on 40K the shape of the Fermi surface could be mea-
sured for various particle densities. Also, employing
the magnetic-field dependence of the scattering be-
tween two spin species (Feshbach resonance), inter-
action effects like the transfer of atoms into higher
bands could be observed.

These pioneering experiments on bosonic and
fermionic atoms in optical lattices show that quan-
tum simulation of correlated many-body systems
may soon be within reach of experimental possibil-
ities. These exciting prospects have led to a very
large number of proposals for correlation effects in
many-body systems that could be studied with atoms
in optical lattices, see the review by Lewenstein et al.
[218].

11.6.3 Universal optical lattice quantum
computing?

The question mark in the title of this section implies
the existence of problems impeding a straightfor-
ward implementation of quantum information pro-
cessing in optical lattice systems. The most impor-
tant of these problems is the lack of addressability
of individual qubits. While the simulation of corre-
lated quantum many-body systems profits from the
fact that all atoms in an optical lattice are equal and
in essentially the same environment, universal quan-
tum computing suffers from this indistinguishability
since the qubits cannot be addressed or manipulated
individually, as necessary for running a non-trivial
quantum algorithm.

To be able to distinguish between atoms the transla-
tional symmetry of the optical lattice must be bro-
ken. This can be achieved, for example, by apply-
ing a magnetic field gradient which makes the transi-
tion frequency of an atom depend on its position and
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thus allows for different quantum operations at dif-
ferent positions. A more radical approach would be
to abandon the three-dimensional optical lattice with
its µm-size lattice constant and replace it with a two-
dimensional array of focused laser beams with a sin-
gle atom trapped in each laser focus [198, 199]. Each
such focus is typically some µm in size and typical
distances between neighboring foci are several tens
of µm, so that individual atoms can be addressed
with an additional focused laser beam. The neces-
sary arrays of microlenses can be manufactured by
microoptical techniques.

Review: quantum simulations with ultracold atomic
gases [226]

Problems

For sufficiently large potential strength V0 the opti-
cal lattice potential (11.2) can be approximated by a
harmonic oscillator potential

Vosc =
mw

2

2
~r2,

where~r is the D-dimensional vector of displacement
from the potential minimum.

a) Calculate the Hubbard interaction U (11.15),
approximating the Wannier function wn(~r) by
the normalized oscillator ground-state wave
function

f0(~r) = p

�D/4a�D/2 exp�1
2

✓
~r
a

◆2

,

where a =
q

h̄
mw

is the characteristic length of
the quantum harmonic oscillator. Show that U
grows as V D/2

0 .

b) The nearest-neighbor hopping amplitude t can
be approximated by the overlap (the integral
of the product of the wave functions) between
the ground-state wave functions in neighbor-
ing potential wells. Calculate t and determine
its dependence on the parameters of the optical
lattice potential. Show that t decreases as V0
grows.
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11.5 Neutrale Atome und Quantencomputing/Quantensimulation



Gitter aus Licht

    0

red detuning
dipole in phase

blue detuning
dipole out of phase

E
µe

E

E µe- . > 0E µe- . < 0

µe

Laser frequency

Force towards high field Force towards low field

Eine stehende Laserwelle (Spiegel...) mit Frequenz oberhalb oder unterhalb einer Resonanz sorgt
dafür, dass das Induzierte Dipolmoment der Atome gegenphasig oder gleichphasig mit dem Feld
schwingt. Das elektrische Dipolmoment ist also entweder antiparallel zum Feld, so dass die
Dipole (Atome) vom starken Feld abgestoßen werden, oder parallel zum Feld, so dass sie zum
starken Feld hingezogen werden.



Gitter aus Linsen
Mit einer Matrix aus Mikrolinsen stellt man regelmäßig angeordnete Mikrobrennpunkte her, in
denen sich Atome ansammeln.

(Bilder aus Dumke et al. Phys. Rev. Lett. 89, 097903 (2002))





Atome sortieren mit Förderbändern aus Licht

Langsame Phasenverschie-
bung (kleine Frequenz-
di↵erenz) zwischen den
gegenläufigen Strahlen bringt
die stehende Welle zum
Laufen !

”
Förderband“.

Zwei zueinander senkrech-
te Förderbänder können be-
nutzt werden, um Atome
regelmäßig an gewünschten
Stellen einzusortieren.
(Miroshnychenko et al., Nature

442, 151 (2006); mit Videoclip)



11.6 Atome mit WW in optischen Gittern: Die etwas anderen Festkörper

Feynmans Idee: Simuliere ein Quantensystem durch ein anderes!



Manipulationen mit Licht

Aus Immanuel Bloch, Nature Physics 1,23 (2005).



Verschiedene Phasen im Lichtkristall

Links: Ortsraum; rechts: Impulsraum
Aus Immanuel Bloch, Nature Physics 1,23 (2005).



Das Hubbard-Modell

Größenskalen:

”
echter“ FK: a ⇠ 10

�10m, Elektron: punktförmig.

”
Lichtkristall“: a ⇠ �L ⇠ 10

�6m, Atom: r ⇠ aB ⇠ 10

�10m.

Potential des D-dimensionalen
”
Lichtkristalls“:

V (~r) = V0

DX

i=1

sin

2 kLri

Überlagerung von D orthogonalen Laser-Stehwellen mit Wellenzahl kL = 2⇡/�L. Potentialstärke
V0 ⇠ Laserintensität; schwach ~r-abhängig (Strahlprofil, Fokussierung)



Typische Energien

Wellenfunktion eines freien Teilchens:

 ~k(~r) =

1p
⌦

ei~k·~r

(im Volumen ⌦). Energie:

"~k =

~2k2

2m
.

Im Lichtgitter ist �L etwa gleich einer Resonanzwellenlänge. Wird ein �L-Photon absorbiert
oder emittiert, gibt es eine Rückstoß-Energie

ER =

~2k2
L

2m
.

Das ist die typische Energieskala.



Periodisches Potential: ebene Wellen werden gitterpe-
riodisch moduliert ! Blochfunktionen; Energiebänder
weichen mehr oder weniger stark von Parabelform ab.
Für schwaches Potential V0 hat das niedrigste Band die
maximale Energie (Rand der Brillouinzone)

~2

2m

⇣⇡
a

⌘2
=

~2

2m

✓
2⇡

�L

◆2

=

~2k2
L

2m
= ER. Bandstruktur für starkes (links), schwa-

ches (Mitte) und verschwindendes
Laser-Potential
Aus I. Bloch, Nature Physics 1,23 (2005).

Hamiltonian nichtwechselwirkender Fermionen oder Bosonen in einem (z.B. optischen) Gitter

H =

X

~k,n

"~k,nc†~k,n
c~k,n ,

n ist der Bandindex; die Erzeuger und Vernichter beziehen sich auf Blochfunktionen; statdessen
kann man (besser für unsere Diskussion) auch Wannierfunktionen nehmen.

wn(~r �~l) =

1p
N

X

~k

e�i~k·~l n~k(~r).



~l ist der Gitterplatz, um den die Wannierfunktion zentriert ist. Für große Gitterabstände
gehen die Wannierfunktionen in atomare Wellenfunktionen über. Hamiltonian, ausgedrückt im
Wannierbild:

H =

X

~l,~l0

t~l�~l0nc†~lnc~l0n ,

wo die Hopping-Elemente t~l�~l0n angeben, mit welcher Wahrscheinlichkeitsamplitude ein Platz-
wechsel zwischen zwei Gitterplätzen stattfindet:

t~l�~l0n =

1

N

X

~k

"~knei~k·(~l�~l0).

Hopping-Elemente können auch als Überlapp-Matrixelemente zwischen Wannierfunktionen an
den beiden beteiligten Gitterplätzen geschrieben werden.

Für starkes Potential V0: Wannierfunktionen stark in ihrer jeweiligen Potentialmulde lokalisiert,
Überlapp nur zwischen nächsten Nachbarn nennenswert! nur ein Hopping-Element �tn. Dann
ist die Bandstruktur

"~kn = �2tn

DX

i=1

cos kia.



~l ist der Gitterplatz, um den die Wannierfunktion zentriert ist. Für große Gitterabstände
gehen die Wannierfunktionen in atomare Wellenfunktionen über. Hamiltonian, ausgedrückt im
Wannierbild:

H =

X

~l,~l0

t~l�~l0nc†~lnc~l0n ,

wo die Hopping-Elemente t~l�~l0n angeben, mit welcher Wahrscheinlichkeitsamplitude ein Platz-
wechsel zwischen zwei Gitterplätzen stattfindet:

t~l�~l0n =

1

N

X

~k

"~knei~k·(~l�~l0).

Hopping-Elemente können auch als Überlapp-Matrixelemente zwischen Wannierfunktionen an
den beiden beteiligten Gitterplätzen geschrieben werden.

Für starkes Potential V0: Wannierfunktionen stark in ihrer jeweiligen Potentialmulde lokalisiert,
Überlapp nur zwischen nächsten Nachbarn nennenswert! nur ein Hopping-Element �tn. Dann
ist die Bandstruktur

"~kn = �2tn

DX

i=1

cos kia.

Und jetzt mit Wechselwirkung!



Welche Wechselwirkung? Wegen der Größenverhältnisse ist nur langreichweitiger Anteil interes-
sant; parametrisierbar durch Streulänge aS:

Vint(~r � ~r0
) =

4⇡~2

m
aS�(~r � ~r0

).

Gestalt des Wechselwirkungs-Hamiltonians in Wannierdarstellung: Summe von Termen mit
jeweils
• zwei Erzeugern und zwei Vernichtern
• einem Integral (Matrixelement) aus 4 Wannierfunktionen an 4 (oder weniger) Gitterplätzen
und dem Wechselwirkungspotential.

Wegen starker Lokalisierung durch starkes Potential dominiert der Term, bei dem alle vier
Wannierfunktionen an einem Platz sitzen. Die Wechselwirkung ist dann gegeben durch die
Energie

U =

4⇡~2

m
aS

Z
d3r |wn(~r)|4.



Wenn alles sich in einem Band abspielt, lassen wir den Bandindex n weg und erhalten für
Spin-1/2-Fermionen das Hubbard-Modell:

H = �t
X

~l,~l0,�

c†~l�c~l0� + U
X

~l

n~l"n~l#

(~l,~l0 nächste Nachbarn), n~l� := c†~l�c~l� ist der Teilchenzahloperator. Das Pauliprinzip diktiert
hier die Spin-Kombination im Wechselwirkungsterm: gleicher Spin ist verboten.

Bosonen mögen gleichen Spinzustand, und für Bosonen im gleichen Spinzustand ist das
”
Bose-

Hubbard-Modell“

H = �t
X

~l,~l0

c†~l c~l0 +
U

2

X

~l

n~l(n~l � 1).



Wenn alles sich in einem Band abspielt, lassen wir den Bandindex n weg und erhalten für
Spin-1/2-Fermionen das Hubbard-Modell:

H = �t
X

~l,~l0,�

c†~l�c~l0� + U
X

~l

n~l"n~l#

(~l,~l0 nächste Nachbarn), n~l� := c†~l�c~l� ist der Teilchenzahloperator. Das Pauliprinzip diktiert
hier die Spin-Kombination im Wechselwirkungsterm: gleicher Spin ist verboten.

Bosonen mögen gleichen Spinzustand, und für Bosonen im gleichen Spinzustand ist das
”
Bose-

Hubbard-Modell“

H = �t
X

~l,~l0

c†~l c~l0 +
U

2

X

~l

n~l(n~l � 1).

Der Steuerparameter des Hubbardmodells ist das Verhältnis t/U , und das kann mit dem Laser
eingestellt werden:

U ⇠ V
D
4

0 t ⇠ e�constpV0

Grenzfälle des Grundzustands sind gut verstanden.





Vom k-Raum zum Ortsraum: Einfach abwarten...

87Rb

Aus Greiner et al. Nature 415, 39 (2002)



Der Mott-Hubbard-Übergang: Live und in Farbe

Aus Greiner et al. Nature 415, 39 (2002)



Kollaps und Wiederbelebung

Aus Greiner et al. Nature 419, 51 (2002)

Plötzliches Umschalten von t/U macht aus einem Eigenzustand des Hamiltonians eine Super-
position, die Oszillationen zeigt.



Fermisystem ohne Wechselwirkung : Fermifläche

Aus Immanuel Bloch, Nature Physics 1,23 (2005).



Fermisystem mit Wechselwirkung



Sauberer Festkörper ohne Fehlstellen, Gitterschwingungen...; mit kontrollierbaren Parametern:

2 · 10

5 40K-Atome in den Gesamtspinzuständen |F,mF i = |92,�
9
2i = | #i und |92,�

7
2i = | "i ...

...in einem (Licht-) Potential aus zwei unabhängigen Komponenten: periodisch + parabolisch.

Parabolisches Potential drückt die Fermionen im (festen) Gitter zusammen; im realen Festkörper
wird das Gitter bei Kompressibilitätsmessungen dagegen immer mit komprimiert.

Hubbardmodell:

H = �t
X

~l,~l0,�

c†~l�c~l0� + U
X

~l

n~l"n~l# +

X

~l

VParabel(
~l)(n~l" + n~l#)

Das Hubbard-U kann über eine Feshbach-Resonanz gesteuert werden (Streulänge; vgl. Duine
und Stoof, Physics Reports 396, 115 (2004)).

Achtung: t heißt bei den Atomphysikern immer J .
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9
2i = | #i und |92,�

7
2i = | "i ...

...in einem (Licht-) Potential aus zwei unabhängigen Komponenten: periodisch + parabolisch.

Parabolisches Potential drückt die Fermionen im (festen) Gitter zusammen; im realen Festkörper
wird das Gitter bei Kompressibilitätsmessungen dagegen immer mit komprimiert.

Hubbardmodell:

H = �t
X

~l,~l0,�

c†~l�c~l0� + U
X

~l

n~l"n~l# +

X

~l

VParabel(
~l)(n~l" + n~l#)

Das Hubbard-U kann über eine Feshbach-Resonanz gesteuert werden (Streulänge; vgl. Duine
und Stoof, Physics Reports 396, 115 (2004)).

Achtung: t heißt bei den Atomphysikern immer J .

Was erwartet man?



Isolator-Phasen
sind inkompressibel:
Doppelbesetzung
oder Transfer in
höheres Energie-
band sind teuer.



Größe der Atomwolke in Abhängigkeit von der Kompressionsstärke, für verschiedene Werte der
Hubbard-Abstoßung U .
Bilder zeigen die Fermifläche (für U = 0); bei E ist das Band voll; weitere Kompression
unmöglich.



Rechte Seite:
”
Hochzeitstor-

ten“-Struktur der Dichte, mit
Plateaus bei einem (Mott-
Isolator) bzw zwei (alles voll)
Teilchen pro Gitterplatz.
(Beachte: Hier ist die Zahl der
Teilchen pro Platz und Spin-
richtung aufgetragen ! Fak-
tor 2.)

Kompressibilität in Abhängigkeit von der Kompressionsstärke, für verschiedene Werte der
Hubbard-Abstoßung U . Das Minimum in der Kurve C ist die Signatur des Mott-Isolators (1
Fermion pro Gitterplatz).



Noch ein Trick: Künstliche Magnetfelder

Neutrale Atome können an reale Magnetfelder höchstens schwach über ihre Dipolmomente
koppeln ! Studium der E↵ekte von Magnetfeldern auf geladene Teilchen (Quanten-Hall-
E↵ekt...) ist in diesen Modellsystemen nicht möglich.
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Oder vielleicht doch?
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koppeln ! Studium der E↵ekte von Magnetfeldern auf geladene Teilchen (Quanten-Hall-
E↵ekt...) ist in diesen Modellsystemen nicht möglich.

Oder vielleicht doch?

Wie wirkt ein Magnetfeld auf ein geladenes Teilchen?

~p �! ~p� q ~A(~r)

bewirkt eine zusätzliche ortsabhängige Phasenverschiebung in der Wellenfunktion.



Noch ein Trick: Künstliche Magnetfelder
Neutrale Atome können an reale Magnetfelder höchstens schwach über ihre Dipolmomente
koppeln ! Studium der E↵ekte von Magnetfeldern auf geladene Teilchen (Quanten-Hall-
E↵ekt...) ist in diesen Modellsystemen nicht möglich.

Oder vielleicht doch?

Wie wirkt ein Magnetfeld auf ein geladenes Teilchen?

~p �! ~p� q ~A(~r)

bewirkt eine zusätzliche ortsabhängige Phasenverschiebung in der Wellenfunktion.

Versuche eine derartige Phasenverschiebung auf optischem Weg zu erreichen.



Bose-Einstein-Kondensat aus bis zu 2.5 ·10

5 87Rb-Atomen.
Der Grundzustand hat Gesamtspin F = 1.
mF = 0,±1 spalten in einem Magnetfeld auf. Die Atome bewegen sich gemäß der Dispersions-
relation

E(

~k,mF ) =

~2k2

2m
+ ~!ZmF

(!Z = Zeeman-Aufspaltung).

Raman-Prozess koppelt die verschiedenen mF -Komponenten anein-
ander: Emission und Absorption von zwei Photonen mit passender
Di↵erenzfrequenz, nahe dem Übergang zu einem angeregten Hilfszustand.

Trick: Verwende zwei Raman-Laser unterschiedlicher Strahlrichtung
! mF -abhängiger Impulsübertrag auf das Atom.

(Aus Lin et al. Phys. Rev. Lett. 102, 130401 (2009))

|0>

|1>

|aux>

bla



Oberes Bild:
Die Parabel-Dispersionen der Atome mit unter-
schiedlichem mF sind gegeneinander verschoben
(dünne schwarze Linien). Der Raman-Prozess kop-
pelt die Zustände mit einer Stärke (Rabifrequenz)
⌦R. In der Rotating-Wave-Approximation hat die
Hamiltonmatrix für den relevanten Unterraum die
Gestalt:

(�: Verstimmung der Ramanlaser-Frequenz-
di↵erenz gegenüber !Z, ✏ ist die Zeeman-
Verschiebung 2. Ordnung für mF = 0.) Die
Eigenwerte sind die dicken roten Linien, für
� = 0. Das Minimum liegt bei k = 0.

Unteres Bild:
Wie oben, aber � 6= 0; das Minimum liegt bei
einem endlichen k:

E(k)� E0 ⇡
1

2m
(~(k � k0))

2
=

1

2m
(p� q̃ ˜A)

2



Das synthetische Vektorpotential ˜A hängt von der Verstimmung � ab, die über das (reale) Ma-
gnetfeld ortsabhängig gemacht werden kann ! synthetisches Magnetfeld.

Das Bose-Einstein-Kondensat besitzt eine gemeinsame makroskopi-
sche Wellenfunktion ! Flussquantisierung des (synth.) Magnetfelds,
ähnlich wie beim Supraleiter. Flussquanten äußern sich als Wirbellinien
(vortices).
Diese wurden (mit einer etwas anderen Geometrie als oben beschrie-
ben) von Lin et al. (Nature 462, 628 (2009)) beobachtet.

B=0/ B=0

Supraleiter

Loch



Einige experimentelle Details:


