12) Solid-State Systems

12.1 Solid state NMR/EPR12.2 Superconducting systems12.3 Semiconductor qubits

Solid-State NMR / EPR

12.1.1 Scaling behavior of NMR quantum information processors 12.1.2 ³¹P in silicon 12.1.3 N@C60 **12.1.4 Other proposals 12.1.5 Single-spin readout** 1>

Why Solids ?

- Liquid state NMR is an excellent system for small quantum registers.
- For > 10 qubits, problems arise:
 - addressability
 - decoherence
- Solids provide possible solutions:
 - many qubits
 - local addressing
 - low temperature

Signal loss for pps preparation

Solid-State NMR

H. Kampermann, and W.S. Veeman, 'Quantum Computing Using Quadrupolar Spins in Solid State NMR', Quantum Information Processing <u>1</u>, 327 (2002).

23
Na : I = 3/2 = 2 qubit

Electron-Nucleus Systems

Electron-nucleus entangling in solid malonic acid radical

M. Mehring, J. Mende, and W. Scherer, Phys. Rev. Lett. <u>90</u>, 153001 (2003).

Pseudopure state preparation

$$\rho_{10} = \begin{pmatrix} 0.01 & 0 & 0 & 0 \\ 0 & -0.06 & 0 & 0 \\ 0 & 0 & 1.02 & 0 \\ 0 & 0 & 0 & 0.03 \end{pmatrix}$$

"S-Bus"

Electron spin mediates nucleus-nucleus couplings

³¹P in Solicon

^{31}P = shallow donor

nuclear spin = qubit
electron spin = control

Relevant Interactions

$$\mathcal{H} = -\omega_{I} I_{z} - \omega_{S} S_{z} - a \vec{I} \cdot \vec{S}$$

nuclear Zeeman

electron Zeeman hyperfine

QubitControlTransition frequency $\omega_0 = \omega_I + a/2$

(high field approximation)

Why ³¹P in Si ?

Long decoherence times:

Electron spin $T_2 \sim 60$ ms in ²⁸Si @ 7K Nuclear spin $T_1 > 10$ h

Excellent technology base

²⁸Si has nuclear spin 0
Natural abundance: 4.6% ²⁹Si

Spin-orbit coupling small

DiVincenzo's rule 2: Initialization into a well defined state.

Initialize nuclear spin qubit by microwave pulse

Relaxation Dissipation required

Alternatives:

- Optical spin injection through SiGe superlattices or quantum dots
- Electrical spin injection
- Readout

 $|\Psi_{el}(\vec{r_n})|$ large

$$\Psi_{el}(\vec{r_n})$$
 small

 $v_0 \sim 90 \text{ MHz}$

 $\nu_0 \sim 50 \ MHz$ (for U ~ 0.7 V)

Electronic Frequency Tuning

J gate draws electrons into overlap region coupling operator: $\mathcal{H}_J = J \vec{I}_1 \cdot \vec{I}_2$ effective qubit-coupling: 75 kHz depends on B-field, gates

Tuning of Couplings

Donor Separation / nm

Donor Placement

How to put exactly one atom at the right position ?

31P Implantation

Focused ion beam

Si substrate

 $^{31}P^+$

AFM Tip

Chemisorbed ³¹

Hydrogen desorbed

After PH₃ dosing

Phys. Rev. B, 64:161401 (2001).

3) Detection

DiVincenzo's rule 5: Qubit-selective readout.

1) Transfer qubit to electron spin

2) Transfer to readout donor

Current State

Xiao et al., Nature, <u>430</u>, 435 (2004).

Stegner et al., Nature Physics <u>2</u>, 835–838 (2006).

SiGe Spin-Transistor

R. Vrijen et al, Phys. Rev. A 62, 012306 (2000)

Modification of Kane proposal:

- Use SiGe heterostructure
- Use electron spin instead of nuclear
- Only one type of gates needed

M. Friesen et al., PRB 67, 121301 (2003).

Electrostatically confined quantum dots in Si - SiGe QW

4 qubits

Endohedral Fullerenes

N@C60, P@C60

Production

HMI Berlin

Implantation into empty cages

ion source

Purification by HPLC

HPLC Chromatograms

EPR Spectra

C₅₉N on Si

Nano-Positioning

University of Nottingham

Accuracy of positioning determined by surface lattice constant.
 Manipulation process does not induce additional defects on underlying surface

Addressing Qubits

monochromatic radiation affects only one type of spins

Addressing N@C60

Phys. Rev. A **65**, 052309 (2002).

Current pulses through µm-scale wires could shift frequencies by multi-MHz

Frequency Selection

Implement 1-qubit gates by frequency- or field switching

What about 2-qubit gates?

Required: Interaction

Dipole-dipole coupling

$$E_{dd} = \frac{\mu_0}{4\pi} \frac{\gamma_1 \gamma_2}{r^3} (1-3\cos^2\theta)$$

N@C₆₀, 1.1 nm distance

$$\frac{\mathrm{E}_{\mathrm{dd}}}{\mathrm{h}} \sim 50 \mathrm{~MHz}$$

Switch on / off ?

Single-Spin Readout

tip

precessing

Bias

Magnetic Resonance
 Force Microscope

 Scanning Tunneling Microscope Electron Spin Resonance

sample surface

- Optical Detection via Diamond N/V center
- Single Molecule Transistor

Detect modulation of tunnel current at Larmor frequency

First demonstration: Manassen et al., PRL 62, 2531 (1989).

C. Durkan and M. E. Welland, Electronic spin detection in molecules using scanningtunneling microscopy-assisted electron-spin resonance. *Appl. Phys. Lett.*, 80, 458 (2002).

STM EPR of TEMPO

TEMPO on graphite : S=1/2, I=1 : hyperfine splitting

Single-Spin Detection

by optically detected magnetic resonance

Single-Spin Detection

by optically detected magnetic resonance Diamond N/V center

Single Center : Photon Antibunching

Single Center : Spectroscopy

NV - containing nanocrystals

Fluorescence

Detecting N@C60 Spins

Single Spin Force Detection

Crystal Lattice Quantum Computer

F. Yamaguchi, and Y. Yamamoto, 'Crystal lattice quantum computer', Appl. Phys. A 68, 1 (1999).

Detection e.g. by vibrating cantilever

12.2 Superconducting Systems

12.2.1 Charge Qubits
12.2.2 Flux Qubits
12.2.3 Gate Operations
12.2.4 Readout

Superconducting Qubits

Macroscopic quantum state Easily coupled to each other Can be integrated

Non-dissipative: Must operate at < 50 mK Only superconducting elements

Electron temperature < 50 mK

Energy scales:

$$= \int_{0}^{1} \int_{0}^{1} \cdots \int_{0}^{1} \omega_{0}$$

Relevant Observables Flux Φ = phase difference Charge Q

Josephson junction

Harmonic Oscillator

Cooper Pair Box

Coulomb energy of a box:

q
$$E_{C} = \frac{q^{2}}{2C} = \frac{(2ne)^{2}}{2C} = \frac{2n^{2}e^{2}}{C}$$

Hamiltonian including tunnel junction

Gate voltage

Qubit states: |n>, |n+1> Qubit Hamiltonian:

$$\mathcal{H} = 4 \frac{E_C}{\hbar} (1 - 2n_g) \mathbf{S}_{\mathbf{z}} - \frac{E_J}{\hbar} \mathbf{S}_{\mathbf{x}}$$

Flux Qubit

$$\mathcal{H}_{\mathrm{fl}} = -E_J \cos\left(2\pi \frac{\Phi}{\Phi_0}\right) + \frac{(\Phi - \Phi_x)^2}{2L} + \frac{Q^2}{2C_J}$$

Josephson Qubit

: tunnel junction: capacitor

Flux Qubit

Rabi Oscillations

Resonant Excitation

Grover Search

Semiconductor Qubits

12.3.1 Materials12.3.2 Excitons in quantum dots12.3.3 Electron spin qubits

Coupled Quantum Dots

Single-step readout by microwave excitation

M. Friesen et al., Phys. Rev. Lett. 92, 037901 (2004).

Irradiation at v₁₂ creates charge oscillation if qubit is in |1> state
 Can also be used for initialization

R. Hanson, L.H.W.v. Beveren, I.T. Vink, J.M. Elzerman, W.J.M. Naber, F.H.L. Koppens, L.P. Kouwenhoven, and L.M.K. Vandersypen, 'Single-Shot Readout of Electron Spin States in a Quantum Dot Using Spin-Dependent Tunnel Rates', Phys. Rev. Lett. <u>94</u>, 196802 (2005).

Qubits in Quantum Dots

Electrostatically controlled pair of quantum dots

Occupation numbers

[1] J.M. Elzerman, R. Hanson, J.S. Greidanus, L.H.W.v. Beveren, S.D. Franceschi, L.M.K. Vandersypen, S. Tarucha, and L.P. Kouwenhoven, 'Few-electron quantum dot circuit with integrate charge read out', PRB 67, 161308 (2003).