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from which we see that ~m2 = ~n2 and ~m·~n = 0. This is
again a rotation by the same angle α as before, about
an axis orthogonal to the previous axis n̂.
The construction in [3] uses the rotations X

1
4 Z

1
4 and

HX
1
4 Z

1
4 H = Z

1
4 X

1
4 , which are quite similar to those

used above, but unfortunately the axes of rotation are

not orthogonal to each other but only at an angle of
32.65◦. In that case the simple Z-Y-Z decomposition
of an arbitrary rotation into three factors is not possi-
ble, but a decomposition into more than three factors
still is.

VI. IMPLEMENTATIONS: HOW TO BUILD
QUANTUM COMPUTERS

A. General requirements

Any implementation has to define a quantum mechan-
ical system that provides the quantum register con-
taining N qubits. For a ”useful” quantum computer,
N should be at least 400, better 1000; limitations on
the number N of identifiable qubits will therefore be
an important consideration.

      
    

      
    

Quantum
register

N qubits

Initialization
0
0
0
0
0
0
0
0
0

Processor

U1 = eH1τ1

Step 1

U2 = eH2τ2

Step 2

UN = eHNτN

Step N

. . .   .

Readout

|0>

|1>

These qubits must be initialized into a well defined
state, typically into a ground state |0 >. This is neces-
sarily a dissipative process. The implementation must
then provide a mechanism for applying computational
steps to the quantum register. Each of these steps will
be implemented by a unitary operation defined by a
Hamiltonian Hi that is applied for a time τi. After the
last processing step, the resulting state of the quan-
tum register must be determined, i.e. the result of the
computation must be read out. This would typically
correspond to an ideal quantum mechanical measure-
ment, i.e. the projection onto the eigenstate of the
corresponding observable. Readout has to be done on
each qubit separately.

Today, a single implementation of a quantum com-
puter exists, which uses nuclear spin states of
molecules in solution, i.e. liquid-state NMR. Details of
this implementation will be discussed in one of the fol-
lowing subsections. In addition, there is a long list of
proposed implementations, which includes, as qubits,
nuclear and electronic spins, photons, trapped ions,
as well as various states of quantum confined struc-
tures, mostly in semiconductors, and superconducting
devices such as Josephson junctions.

      
    

      
    

NMR in Liquids
Existing Implementation

Implementations
Proposals

Trapped Ions

Quantum Dots

Spins in Solids

Photons

Superconductors

B. DiVincenzo’s five criteria

DiVincenzo [30] gives five requirements that a quan-
tum computer must fulfill:
1) A scalable physical system with well characterized
qubits. An implementation or embodiment of qubits
corresponds to a physical system that has at least two
energy levels that can be identified with the two log-
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ical states |0 > and |1 >. The system will always be
characterized by a number of parameters. They deter-
mine the internal state of the qubit, i.e. the energies
of the states |0 > and |1 >, but also of any additional
states that may exist in the system being considered.
One generally has a large degree of freedom when
choosing the identification of states with logical
qubits. There are a few caveats, however: In par-
ticular, it must be possible to create arbitrary su-
perpositions of these states. This is usually possible
unless there is a selection rule that prevents it. As
an example, we consider two neighbouring quantum
dots, where an electron can tunnel from one dot to
the other. It is then possible to identify state |0 >
with the electron being in dots 1 and state |1 > with
the electron being in dot 2. However, it is not possible
to identify a qubit with each quantum dot, e.g. with
the assignment that the presence of an electron corre-
sponds to |1 >, while its absence would correspond to
|0 >. The superposition of these two states would then
correspond to a superposition between states with dif-
ferent particle numbers, which is usually impossible to
achieve.
Besides the internal Hamiltonian, the interaction of
the system with external fields is also important. Ex-
ternal fields are generally required to apply logical op-
erations to the qubits. Finally, the couplings between
different qubits must be described, as they are needed
for logical operations.
DiVincenzo’s second requirement is
2) Initialization into a well defined state. Typically,
this state is chosen equal to the logical state |0 > for
all qubits. In principle thermal relaxation may achieve
this, provided that the thermal energy kBT is small
compared to the energy level splitting between states
|0 > and |1 >. This may be a slow process in many
systems, in particular in the spin systems, where the
relaxation times are long. This is not critical for the
computation process itself; however, future quantum
computers will require error correction schemes. All
error correction schemes known to date require an in-
put in the form of freshly initialized qubits. These
error correction qubits must be intialized at a rate
that is large compared to the dephasing rate. This
requirement cannot be fulfilled by thermal relaxtion,
where the dephasing processes are always faster than
the spin-lattice relaxation. The requirement can be
met, however, in many optical systems, such as ion
traps, where the initialization goes through optical ex-
citation, which may proceed over a time of the order
of nanoseconds.
3) Long decoherence times. The information in the
quantum register is subject to decay, due to the in-
teraction with external degrees of freedom. The com-
putation must therefore be completed before this de-
cay has significantly degraded the information. The
relevant figure of merit is the number of gate oper-
ations that can be completed before a decoherence
time. The effect of decoherence can partly be elim-
inated by quantum error correction. However, error
correction also increases the duration of the compu-

tation and introduces additional errors. It has been
shown that computation can proceed for an arbitrary
duration if quantum error correction is used and error-
free computation without error correction is possible
for a critical minimum duration that is of the order of
some tens of thousands of gate operations.
4) A universal set of quantum gates. The unitary op-
erations that act as gates on the qubits must be imple-
mented by Hamiltonians that act on the system for a
specified time. Generating the single qubits Hamilto-
nians is in general relatively straightforward: typically
they correspond to external fields acting on the qubits
for a spcified duration. Much more complicated are
the 2-qubit operations, which cannot be implemented
by external fields alone. They involve interactions be-
tween the qubits, and in many cases these interactions
cannot be switched on and off. Often one has to use
static interactions and eliminate the unwanted ones by
a procedure called refocusing. This will be discussed
in more detail in the section on NMR. Every experi-
mentally realisable gate will include imperfections, i.e.
deviations from the ideal behavior. This has the ef-
fect of degrading the information in the quantum reg-
ister and is therefore similar to an additional source of
decoherence. Consequently, these errors can also be
eliminated by error correction schemes, provided they
are small enough.
5) A qubit-selective readout. Such a readout rep-
resents a measurement in the quantum mechanical
sense. An ideal quantum mechanical measurement
collapses the state ψ into an eigenstate φi of the ob-
servable and returns the eigenvalue λi of the corre-
sponding state with probability |ci|2, where ci is the
expansion coefficient of the state ψ =

∑
ciφi. Real

measurements deviate from this. In many realistic
systems, measurements attempts will return no result
instead, e.g. when one tries to measure the state of
a qubit by scattering a photon from it. If the photon
is not scattered, this is not important, one just re-
peats the attempt. If the photon is scattered but not
detected, this is more critical: In this case, an interac-
tion of the qubit with an external system (the photon)
has changed the state of the qubit, and a repetition of
the measurements may produce a different result.
Several strategies are possible to circumvent this prob-
lem: one can try to use a QND (=quantum nondemo-
lition measurement). Such a measurement arranges
for the unavoidable influence that the measurement
must have on the qubit to be such that it does not
affect later measurements of the same variable. Not
all variables can be measured this way, but in most
cases it should be possible to arrange the system in
such a way that QND measurements can be used at
least in principle.
Another possibility is to read out not the qubit itself,
but a copy of it. If the measurement is not success-
ful, or to check the validity of the measurement result,
one can then make an additional copy and read that
out. Such a procedure could be repeated many times
to achieve very reliable readout even with very un-
reliable single measurements. The critical part here
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is the copy operation, which must be reliable. As we
have stressed before, it is not possible to clone a quan-
tum mechanical state, i.e. to make a perfect copy.
However, copying just the information of a quantum
mechanical state that is relevant for the readout of
a specific variable is perfectly possible (in principle!)
and can be repeated arbitrarily often.

C. NMR in Liquids

The first implementation of a quantum computer that
has been realized - and still the only one in existence
- is nuclear magnetic resonance in liquids.

      
    

      
    

Principle 
radio frequency fields excite
transitions between different
spin states in a magnetic field rf

B 

B 

E 

Magnetic resonance is based on the Zeeman effect,
which lifts the degeneracy of spin states. For a spin
I = 1/2, the splitting of the two energy levels is
proportional to the magnetic field strength. An al-
ternating magnetic field perpendicular to the static
magnetic field can induce transitions between these
spin states. The relevant frequency is in the radio fre-
quency range for nuclear spins (10-1000 MHz in fields
of 1-20 T), and in the microwave range (10-300 GHz)
in fields of 0.1-20 T).

1. System and Hamiltonian

The strongest interaction of nuclear spins is usually
the Zeeman interaction with the static magnetic field.
It can be described by the Hamiltonian Hz = −γI ·B
, where γ is the gyromagnetic ratio of spin I. The
usual convention is to orient the z-axis along the static
magnetic field. The Hamiltonian then becomes

Hz = −γIzB0 = −ω0Iz,

where B0 is the strength of the magnetic field and ω0

the Larmor frequency.
In heteronuclear systems, one often uses I for one
species (e.g. 1H) and S for the other (e.g. 13C). The
magnetic field is always treated classically.
Given the commutation relations for angular mo-
mentum, we can write the equation of motion
(Schrödinger) as

dIx/dt = −ω0Iy dIy/dt = ω0Ix dIz/dt = 0.

The resulting evolution of the spin is a precession
around the direction of the magnetic field at the Lar-
mor frequency.

< Ix > (t) = Ixy(0)cos(ω0t− φ)

< Iy > (t) = Ixy(0)sin(ω0t− φ)

< Iz > (t) = Iz(0)

      
    

      
    

The equation is called the Bloch equation, after one
of the discoverers of NMR, who also wrote the the-
ory for it. It can also be derived classically and has
applications to many two level systems besides NMR
(R.P. Feynman, F.L. Vernon, and R.W. Hellwarth,
’Geometrical representation of the Schrödinger equa-
tion for solving maser problems’, J. Appl. Phys. 28,
49-52 (1957).).

2. Radiofrequency Irraditation and Rotating Frame

      
    

      
    

I(ωrf)

Alternating B1-field
⊥ static field B0

B0

A radio frequency field is applied to the system for in-
ducing transitions between the different spin states. It
generates an alternating magnetic field perpendicular
to the static field. This alternating magnetic field is
best described a s superposition of two fields rotating
in opposite directions.
It turns out that to an excellent approximation it
is sufficient to consider the effect of that component
which rotates in the same direction as the freely pre-
cessing spin. It is therefore a convenient fiction to
assume that it generates a circularly polarized rf field.
The resulting dynamics are then best analyzed in a
coordinate system that rotates around the static mag-
netic field at the radio frequency.
The two coordinate systems are related by x

y
z

r

=

 cos(ωt) sin(ωt) 0
−sin(ωt) cos(ωt) 0

0 0 1

 x
y
z


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B) Rotating Frame
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Y

X

(B1, 0, 0) 2 cos(ωrft) (B1, 0, 0) [1 + cos(2ωrft)]

neglect
nonresonant

+ (0, B1, 0) sin(2ωrft)

The quantum mechanical states can be transformed
from the laboratory frame to the rotaing frame with
the operator

U(t) = eiωLtSz .

The same operator also transforms the Hamiltonian:

Hr = U−1H labU + iU−1U

The effective Hamiltonian for this coordinate system
therefore contains a reduced magnetic field; the Lar-
mor frequency is reduced to ∆ω0 = ω0 − ω.
The rf field appears static, e.g. along the x-axis, so
that we obtain a total field

ωeff = (ω1, 0,∆ω0).

The resulting evolution of the system is a precession
around the direction of the effective field.

      
    

      
    

a)

ω  = 01

0 b)

1

0 c)

1

∆ω   = 00

We may consider three specific examples of motion
under the Bloch equations. In the absence of rf ir-
radiation (ω1 = 0), the effective field is aligned along
the z-axis and the precession is the same as in the lab-
oratory frame, except that the precession fre-quency
is lower.
In the case of resonant irradiation (shown on the
right), the field along the z-axis vanishes and the ef-
fective field lies along the x-axis. In the general case,
the effective field lies along a direction in the xz-plane.
Other directions (e.g. along the y-axis) can be chosen
by adjusting the phase of the rf field. The rotation
axis can therefore be oriented in any arbitrary direc-
tion. The angle of rotation α = ωeff t, which is called

the flip angle, is given by the product of the effective
field strength and the pulse duration t. RF Pulses are
a convenient possibility to implement arbitrary rota-
tions about arbitrary axes!

3. NMR Signals

NMR signals are obtained in the time domain, as the
response of the system to a rf pulse. We consider
first the simplest case, where the system consists of a
single spin I = 1/2. The Hamiltonian is (for ~ = 1)
H = −ω0Iz.
Since NMR systems are always mixed states, we must
use a density operator analysis to calculate the signal.
The thermal equilibrium density operator is

ρeq ∝ exp(−H/kT ) ≈ 1− H

kT

where the approximate form, derived for the high tem-
perature limit

∆E = ω0Iz << kT

is almost always valid: under typical experimental
conditions, it is of the order of 10−5. We have there-
fore

ρeq = 1 +
~ω0

kT
Iz.

In the simplest case, one applies a RF pulse that ro-
tates the spin through an angle of π/2 into the xy-
plane.

ρ(0+) = 1 +
~ω0

kT
Ix.

After the pulse, the system undergoes Larmor preces-
sion under the Zeeman Hamiltonian

ρ(t) = e−iHtρ(0)eiHt = 1+
~ω0

kT
(Ixcosω0t+Iysinω0t).

Detection of the signal should not be treated as a
quantum mechanical measurement process. There is
no reduction of a wavepacket, and the system is vir-
tually unaffected by the measurement. Rather than
projecting onto an eigenstate, one measures the ex-
pectation value of a specific observable. This is of
course closely related to the fact that we are working
with an ensemble of spins rather than with individual
systems.
Observation of the precessing magnetization is
achieved through the Faraday effect. The precessing
magnetization changes the flux through the rf coil,
thus inducing a voltage proportional to

s(t) ∝ d

dt
Φ(t) = ω0 < Fx >

= ωo
∑
i

< Iix >=
~ω2

0

2kT
cosω0t
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precessing spin
induced voltage
in coil 

voltage

timeprecessing spin

= rotating magnetization

Detection of precessing Magnetization by Faraday Effect

Damping effects, which are not discussed here, cause
a decay of the signal,

s(t) ∝ ~ω2
0

2kT
cosω0te

−t/T2

For an analysis of the signal one usually considers the
Fourier transform. For an FID decaying exponentially
with time constant T2, the spectrum becomes

s(ω) =

√
1

2π
~ω2

0

2kT
T2

1 + (ω − ω0)2T 2
2

,

i.e. a Lorentzian with a HWHH 1
T2

centered at the
Larmor frequency ω0. The main advantage of the
Fourier transform is that it allows one to distinguish
different transitions: two distinct transitions usually
have different Larmor frequencies ωij

ωij =
Ei − Ej
~

.

The corresponding resonance lines are therefore sepa-
rated in frequency space, while the time domain sig-
nals overlap. The amplitude of each resonance line is
determined by the product of a density operator ele-
ment with an element of the observable; in the sim-
plest case, density operator and observable are iden-
tical, ρ(0) = A = Ix, and amplitudes Aij become

Aij ∝ |(Ix)ij |2.

4. Coding in Quantum Registers
      

    
      

    

E

+ 1
2

- 1
2

|0>

|1>
Spin-1/2 as qubit

In NMR quantum computing, a single qubit is rep-
resented by a spin 1/2. The general terminology has
become to use the +1/2 state to represent a logical
0, while the -1/2 state represents a logical 1. To con-
struct a quantum register, one needs several distin-
guishable qubits, which can be addressed individually.

      
    

      
    

Solid-State Computer

space

separate leads
bit 1 bit 2 bit 3

Liquid-State NMR Quantum Computer

frequency

qubit 1 qubit 2 qubit 3

"monochromatic"
excitation

In conventional computers, addressing of qubits (i.e.
choosing a qubit for processing) is achieved by fixed
wires.
For molecules in solution, this approach is clearly not
feasible. Nevertheless, it is possible to address qubits
selectively: Since the qubit gates are applied with res-
onant radio frequency fields, they are only effective
when the rf frequency is close to the Larmor frequency
of the spin.
Spins whose Larmor frequency differs from the fre-

quency of the radio frequency pulse are not affected
by the pulse to a first approximation. The width of
the frequency range is of the order of the Rabi fre-
quency, i.e. inversely proportional to the length of
the rf pulse.

The difference in Larmor frequencies for different
qubits is associated with their gyromagnetic ratio (for
heteronuclear spin systems) or with the chemical shift
(for homonuclear spin systems). In contrast to con-
ventional computers, where etching localizes different
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Spectrum
of I spin

selectively
excited

weak pulse

qubits, this may be considered a bottom-up approach,
where the molecular design determines the location of
the qubit in frequency space.
Nuclei of a given isotopic species have the same gyro-
magnetic ratio and therefore, to first order, the same
resonance frequency. Nevertheless, the spins of a given
species show significant differences in resonance fre-
quency. These variations can be traced to local vari-
ations of the magnetic field strength that are called
chemical shifts. Chemical shifts are determined by the
structure of the electrons near the nucleus, but these
mechanisms are not of interest here. We only discuss
here how chemical shifts can be used to address spins
as qubits.
Any NMR pulse sequence must therefore be adjusted
to the available range of chemical shifts. The available
chemical shift range depends on the isotope under ex-
amination. In the case of protons (1H), this range is
of the order of 10 ppm. For 13C, it is about 200 ppm,
and similar for 15N . For a typical 1H NMR frequency,

the available frequency range is therefore of the order
of 6 kHz, for 13C in the same field 30 kHz.

5. Coupled Spin Systems

Implementation of quantum algorithms requires two-
qubit gates, which can be implemented by using cou-
plings between qubits / spins.
Such couplings are naturally present in nuclear spin
systems and exploited also in NMR spectroscopy.
There are two main types of couplings, which are
called scalar / indirect / J-couplings, and direct or
dipolar couplings. The latter arise from the magnetic
dipolar field generated by one spin and felt by the
other, while the first is mediated through the electrons
and does not depend on orientation of the molecule.
The difference in orientation dependence is responsi-
ble for the fact that in isotropic liquids, the direct
dipole-dipole coupling is averaged to zero, so only the
scalar J-coupling is observed in the spectrum. In both
cases, the coupling between two spins can be under-
stood as a small additional magnetic field generated
by spin A and acting on spin X, as well as in the oppo-
site direction. We consider here only the simplest case
(which is most useful for NMR quantum computing)
where the interaction can be written as

HAX = dAzXz.

The total Hamiltonian is then

H = Hz +HAX = −ωAAz − ωXXz + dAzXz =

=
1
2

 −ωA − ωX + d/2
−ωA + ωX − d/2

ωA − ωX − d/2
ωA + ωX + d/2


      

    
      

    

AX

f

X-spectrum A-spectrum

Coupled 2-Spin System

For states with parallel spin orientations, the cou-
pling shifts the energy up, while for states with op-
posite spin orientation, the energy is shifted down.
Transitions are possible between the states αα↔ αβ,
αα ↔ βα, αβ ↔ ββ, βα ↔ ββ. The transition fre-

quencies are

ω12 = ωαα↔αβ = ωX − d/2;

ω13 = ωαα↔βα = ωA − d/2;

ω24 = ωαβ↔ββ = ωA + d/2;

ω34 = ωβα↔ββ = ωX + d/2;

The spectrum consists of four lines, each of which is
associated with a transition of one spin and labeled
by the state of the second spin.
To actually calculate the spectrum, we use a density
operator analysis. Like in the case of a single spin, we
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assume excitation from the equilibrium density oper-
ator by an RF pulse. If the two spins are from the
same spin species, one can write the density operator
after the pulse as

ρ(0) ∝ Ax +Xx = Fx =
1
2

 1 1
1 1
1 1

1 1


Assuming that this is also the observable, the signal
becomes

s(t) = Tr {ρ(t)Fx} = Tr {Fx(t)Fx(0)} ,

i.e. the autocorrelation function of the operator Fx.
Since we are in the eigenbase of the Hamiltonian, the
time dependence is

ρlm(t) = ρlm(0)ei(Em−El)t.

or

ρ(t) =

 e−ω12t e−ω13t

eω12t e−ω24t

eω13t e−ω34t

eω24t eω34t


Including the effect of relaxation, the FID becomes

s(t) = Tr {ρ(t)Fx}

= (cosω12t+ cosω13t+ cosω24t+ cosω34t) e−t/T2 .

Using Fourier transformation to obtain the spectrum,
we find four Lorentzian-shaped lines at the position
of the four transition frequencies. Each of those lines
can therefore be associated with a specific off-diagonal
density operator element.

6. Pseudo / Effective Pure States

Before NMR quantum computing was demonstrated,
all algorithms for quantum computers assumed that
quantum computers use individual quantum systems,
which are initially prepared in a specific quantum
state. For liquid state NMR, this is not possible, since
the thermal energy is always much higher than the
energy separation between the two spin states. Spin
states are therefore not pure states, but mixed states,
which can not be converted into the pure states re-
quired to initiate the quantum register. The success
of NMR quantum computing can largely be attributed
to the finding that many of these algorithms can also
be applied to states that are the sum of a pure state
and the unity operator, ρpp = 1 + αρp, where ρpp is
a pseudo-pure state, while ρp is a pure state. If the
unity operator does not contribute to the signal, the
behavior of such a system is exactly equal to that of
a pure state.
The coefficient α is largely determined by the polar-
ization of the spin system. Obviously, a single spin is

always in a pseudo-pure state. In coupled spin sys-
tems, however, the thermal equilibrium states are not
even pseudo-pure. There are a number of procedures
for preparing pseudo-pure states, which are referred to
as ”spatial labeling”, ”temporal labeling” and ”logi-
cal labeling”. Temporal labeling is perhaps easiest to
explain, using the example of two coupled spins. In
equilibrium, the populations of these four states are

αα : 1/4 + ε αβ, βα : 1/4 ββ : 1/4− ε.

To obtain a pseudo-pure state, one can equalize the
populations of three levels (e.g. αβ, βα, ββ) by cycli-
cally permuting them and adding the results. The
time-averaged populations would then be

1
4

(1111) + ε(1− 1
3
− 1

3
− 1

3
)

=
1
4

(1111)− ε

3
(1111) +

4ε
3

(1000)

and therefore correspond to the sum of the unity op-
erator (=the totally mixed state) and a pseudo pure
state.
The well known disadvantages of this process is that
one loses signal by destroying polarization. In the
case of spatial labeling, one turns the population dif-
ferences of states 2, 3, 4 into transverse magnetiza-
tion, which is destroyed by pulsed field gradients. In
the case of logical labeling, additional (ancilla) spins
are used to create pure states for specific ancilla spin
configurations.

7. One qubit gates

Single qubit gates are implemented by rf pulses. In
the rotating frame, a rf pulse can be represented by its
propagator e−iHt, where H is the Hamiltonian during
the pulse and t the duration of the pulse. Depending
on the phase of the rf, the propagator for a resonant
pulse is e−iφIxore−iφIy . The flip angle is

φα = ωατ, α = x, y,

where τ is the duration of the pulse.
Looking at the matrix representation

e−iφIx =
(

cos(φ/2) −isin(φ/2)
−isin(φ/2) cos(φ/2)

)

e−iφIy =
(
cos(φ/2) −sin(φ/2)
sin(φ/2) cos(φ/2)

)
one notices immediately that the most important sin-
gle qubit quantum logic gates have straightforward
implementations. Combining these two generators, it
is possible to implement any SU(2) operation.
An important example is the set of rotations around
the z axis, which can be generated e.g. as

e−iφIz =
(
e−iφ/2

eiφ/2

)
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= e−iπ/2Ixe−iφIyeiπ/2Ix = e−iπ/2IyeiφIxeiπ/2Iy

We now consider the most important single-qubit
gates. Using the conventional choice of relative phases
between states, the NOT gate may be implemented,
up to an irrelevant overall phase, by

NOT : e−iπIx =
(

−i
−i

)
= e−iπ/2

(
1

1

)
.

This implementation of NOT thus differs from the
usual representation by an overall phase of −π/2.
Since such overall phases do not correspond to ob-
servable quantities, we will not consider them here
and regard all implementations that differ by such a
phase factor as equivalent.
One might first think that any 180 degree pulse, which
inverts the two states |0 > and |1 > should be an im-
plementation of NOT. However, looking at the prop-
agator for a πy pulse,

e−iπIy =
(

0 −1
1 0

)
,

one sees that this differs from the NOT in terms of
the relative phase that it applies to the two states.
The Hadamard gate

H =
1√
2

(
1 1
1 −1

)
can also be implemented by an rf pulse

i√
2

(
1 1
1 −1

)
= e
−i( π√

2
)(Ix+Iz)

Physically this transformation can be achieved in a
number of different ways: either by applying an off-
resonant rf pulse, i.e. one where the z-component in
the rotating frame does not vanish, or by a sequence
of three rf pulses along the y, x and -y axes:

H = e−i
π
4 Iye−iπIxei

π
4 Iy = e−iπIxei

π
2 Iy .

this is an example that shows how rotations can be
rotated. The third version is experimentally the sim-
plest: a π/2y-pulse is followed by a πx pulse. Such
schemes of combining rotations are very useful and
flexible. One often uses the possibility to modify prop-
agators, rather than states by ”sandwiching” them be-
tween two pulses. For many purposes the Hadamard
gate can be replaced by the pseudo-Hadamard gate

h =
1√
2

(
1 1
−1 1

)
= eiπ/2Iy

and its inverse

h−1 =
1√
2

(
1 −1
1 1

)
= e−iπ/2Iy ,

i.e. by π/2 rf pulses around the y axis.

8. Two Qubit Gates

Two-qubit gates require couplings between the spins
to apply transformations to one spin conditional on
the state of the other spin. There are two somewhat
different ways of implementing such gates.
One may be referred to as ”soft pulses”, the other as
”pulses plus free precession”. The first uses the fact
that weak rf fields affect only transitions whose res-
onance frequency is close to the rf frequency. One
applies rf to that component of the I spin spectrum,
which is associated with the S-spin in a particular
state. This results e.g. in the inversion of spin I condi-
tional to the spin S being in the |1 > state - a CNOT
gate.

CNOT =

 1
1

1
1

 .

This variation is conceptually simple since it can be
described in terms of two level systems. It has the
disadvantage, however, that it requires long pulses,
thus causing excess decoherence.

      
    

      
    

Spin-Spin Coupling:  HII  =  d IzSz

Dynamics of Spin I depends on state of spin S

I(0)

I(t;S=↑)

I(t;S=↓)

The second approach can also be understood in terms
of a vector diagram. We consider a spin A coupled to
a control spin X by the interaction dAzXz. As shown
above, the resulting spectrum has two resonance lines
in the A-spectrum, which can be labeled by the states
| ↑> and | ↓> of the X spin. We will assume that
pulses can be applied to the A and X spin separately.
Starting from the state |00 >, a e−iπ/2Ay rf pulse cre-
ates a superposition state

Ψ(0) =
1√
2

(|0 > +|1 >)⊗ |0 > .

Free precession converts it into a state

Ψ(t) =
1√
2

(|0 > e−idt/4 + |1 > eidt/4)⊗ |0 >,

where we have assumed that the rf frequency is cen-
tered on the spectrum of the A spin, i.e. between the
two satellite transitions. After a time t = 1

2d , the spin
has reached a state

Ψ(
1
2d

) =
1
2

((1− i)|0 > +(1 + i)|1 >)⊗ |0 >,
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If a e−iπ/2Ax pulse is applied at this time, it returns
the spin into its original state |00 >. This can be
readily followed in terms of a vector model: The initial
y-pulse turns the spin from the z-axis to the x-axis.
It then precesses by 90 degrees to the y-axis, and the
subsequent x-puls flips it back to the z-axis.
If we apply the same sequence of pulses to the state
|01 >, the free precession occurs with opposite sign

ρ(t) = (|0 > eidt/4 + |1 > e−idt/4)⊗ |1 >,

and the second pulse rotates the spin to the nega-
tive, rather than the positive z-axis. As can be easily
checked, the sequence of two pulses with free preces-
sion is therefore equivalent to a controlled NOT oper-
ation

ei
π
2Xye−i(

π
2Xz+π

2Az−πAzXz)e−i
π
2Xy

= (1 + i)

 1
1

1
1

 .

The additional terms of Xz and Az are for normaliza-
tion of the relative phases. They can be implemented
as composite pulses or as phase shifts.

9. Three and more Qubits

Three qubit gates like the Toffoli gate can be con-
structed in the same way as two-qubit gates. The
double-controlled phase shift can be represented as
shown. However, since there are no three-spin inter-
actions in nature, these must be created artificially.
This is still possible, using e.g. transformations like

e−iβByCze−iαAzBxeiβByCz = e−iγAzBzCz .

Alternatively, three- or N-spin gates may be gener-
ated using selective pulses. NMR spectroscopists have
developed tools to implement arbitrary propagators.
See, e.g [31, 32].

10. Readout

      
    

      
    

N
S

precessing spin
induced voltage
in coil 

voltage

timeprecessing spin

= rotating magnetization

Detection of precessing Magnetization by Faraday Effect

Detection in magnetic resonance is best described in
a classical picture: the transverse components of the
spin generate a macroscopic magnetisation that pre-
cesses around the static magnetic field. The magnetic
flux through a coil oriented perpendicular to the field
changes therefore sinusoidally. According to Fara-
day’s law, such a temporal variation in the magnetic
flux induces a voltage in the coil, which is recorded as
the signal.
Obviously such a detection scheme is not compati-
ble with the usual description of a quantum mechan-
ical measurement, which involves the collapse of a
wavefunction. Instead, one observes the system con-
tinuously, without significantly affecting its behavior.
This difference is closely related to the fact that the
system is an ensemble, rather than the usually as-
sumed single particle system. In addition, the ob-
served quantity is not the population of some state,
i.e. < ψk|ψk >, but rather the evolution of a coher-
ence, i.e. |ψj >< ψk|.
There are cases in quantum computation, where the
readout process hinges on the collapse of a wavefunc-
tion. For those cases, which include Shor’s algorithm,
the algorithm must be modified when it is applied
to an NMR system. The non-existence of a collapse
is handled by appending an additional step, which is
polynomial in the number of bits and allows one to
obtain the result from ensemble measurements.
When a quantum algorithm requires the measurement
of populations, it can be trivially modified to allow
implementation on an NMR quantum computer: It
is straightforward to convert populations into coher-
ences that are directly proportional to the populations
and are directly observable. Before we discuss these
possibilities, we first check which quantities are di-
rectly observable. The state

1√
2

(|0 > +|1 >)⊗ |0 >

contains observable coherence (i.e. transverse mag-
netization), but not the state | ↑> or the state | ↓>.
While the instantaneous observable is

∑
i I
i
x or

∑
i S

i
y,

we need to take into account that a NMR measure-
ment is not instantaneous; rather, one measures an
FID signal over a total time of about a second. Dur-
ing this period, the Zeeman part of the Hamiltonian
turns Ix and Iy into each other:

Hz : Ix → Iy → −Ix → −Iy → Ix.

Similarly, the coupling Hamiltonian causes evolutions
of the type

HIS : Ix → e−iφIzSzIxe
iφIzSzIx(t) = Ixcosφ+IySzsinφ

This process is a direct mapping of the different tran-
sitions: In a weakly coupled two-spin system, every
transition can be labeled with its spin and the state
of the other spin. The coherence of a single transition
can thus be written as

ρ12 + ρ21 = (1 + Iz)⊗ Sx.
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Similarly the other S-spin transition corresponds to
coherence

ρ34 + ρ43 = (1− Iz)⊗ Sx.

The sum of the two transitions is therefore

ρ12 + ρ21 + ρ34 + ρ43 = 1⊗ Sx.

Similarly we can take the difference, which corre-
sponds to one of the two lines in emission:

ρ12 + ρ21 − ρ34 − ρ43 = Iz ⊗ Sx,

which is the quantity that results from the coupled
evolution.

      
    

      
    

This scheme can easily be extended to more spins.
Examples of such terms are given, e.g., in D.G. Cory,
M.D. Price, and T.F. Havel, ’Nuclear magnetic res-
onance spectroscopy: An experimentally accessible
paradigm for quantum computing’, Physica D 120, 82-
101 (1998). It should be noted, though, that the sys-
tem shown here is not very suitable for quantum com-
putation, since the lines are not well resolved. These
resonance lines represent direct measures of the al-
lowed transition, which are determined by the condi-
tions that

∆mi = ±1,∆mj = 0, i 6= j

one spin changes its magnetic quantum number, all
other spins remain. If other components of the den-
sity operator are to be measured, this is possible by
converting them into observable magnetization.
As an example, we consider the AX system. As we
have seen before, a e−iπ/2Ax or e−iπ/2Ay rf pulse turns

the state |00 > into observable coherence of the A
spin. Similarly a e−iπ/2Xx or e−iπ/2Xy rf pulse turns
it into observable coherence of the X spin.
If the initial state is |10 >, the same signals are ob-
served on the A spin, but with opposite phase. On the
X spin, this initial state generates a positive signal,
but in the opposite transition. Similar observations
are possible for the |01 > and |11 > states. It is pos-
sible to measure the complete density operator (I.L.
Chuang, N. Gershenfeld, and M. Kubinec, ’Experi-
mental Implementation of Fast Quantum Searching’,
Phys. Rev. Lett. 80, 3408-3411 (1998).) by ”Tomog-
raphy”.

11. DiVincenzo’s criteria
      

    
      

    

E

+ 1
2

- 1
2

|0>

|1>
Spin-1/2 as qubit

1) Qubits: The usual implementations use nuclear
spins I=1/2 and identify |0 > = | + 1/2 > and |1 >
= | − 1/2 >. The qubits are well characterized in
the sense that their energies are well known and the
coupling to external fields occurs only through the
Zeeman interaction. In the liquid state NMR experi-
ments, logical qubits are not represented by individual
spins, but by collections of spins of the order of Avo-
gadro’s number. This is in contrast to the usual as-
sumption of quantum computation theory, and some
consequences of this need to be addressed in the con-
text of readout and initialization. There are a few
suggestions how this could be avoided, but present
state of the art does not allow readout of individual
spins with sufficient efficiency to make such quantum
computers workable.
The qubits also must be addressed, both for perform-
ing operations and for readout. In liquid state NMR,
the individual qubits are distinguishable by their res-
onance frequency. The resonance frequencies of the
different spins may be shifted by chemical shift effects
or the qubits may be represented by different isotopes.
The latter is clearly preferable, since it avoids cross-
talk between qubits. However, since the number of
useful isotopes is limited, assigning different isotopes
to different qubits is clearly not a scalable procedure.
When one uses chemical shift differences, the separa-
tion should be as large as possible to allow fast oper-
ations of logical gates.
NMR systems fulfill the ”qubit-identification” require-
ment quite well, but the existing ones fail the first part
of DiVincenzo’s criterion: they are not scalable. This
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point will be discussed again when we address the ini-
tialization aspect.
2) Initialization into a well defined state. In liquid
state NMR, initialization is achieved by relaxation,
which provides for an excess of spins in the ground
state. This must be combined with the preparation of
a pseudo-pure state, by averaging of the populations of
the energetically higher states. While this procedures
can be used for small spin systems, they are clearly
not scalable for larger systems.
3) Long decoherence times. This works quite well for
liquid state NMR, where decoherence times are of the
order of 1 s. However, typical gate times are at least
several milliseconds, so the number of gates that can
be applied is limited to approximately 100.
4) A universal set of quantum gates. At this point,
liquid state NMR scores very well: the implementa-
tion of unitary transformations is well established and
rather straightforward.
5) A qubit-selective readout. Another strong point, as
discussed above. The differentiation of qubits requires
chemical shift separation, but is much easier to achieve
than the addressing during gating. It is even possible
to read out the full density operator, rather than only
the populations, as in standard quantum computing
algorithms.

D. Solid State NMR/EPR

While NMR has some strong points, it has a large
weak point, which is the lack of scalability. To be-
come scalable, pure states are necessary. Pure states
correspond to very low spin temperature. While the
spin temperature can be quite different from the lat-
tice temperature, it will be very hard to create pure
states at room temperature; most proposals for pure
state spin systems are therefore geared towards he-
lium temperature. The will therefore most likely be
solid state systems.
One particularly interesting suggestions for solid state
spin-based quantum computers is due to Kane [B.E.
Kane, ’A silicon-based nuclear spin quantum com-
puter’, Nature 393, 133-137 (1998).]. He uses 31P
impurities in Si, the only I = 1/2 shallow (group
V) donor in Si. The Si :31 P system was exhaus-
tively studied 40 years ago in the first electron-nuclear
double-resonance experiments. At sufficiently low 31P
concentrations at temperature T = 1.5 K, the electron
spin relaxation time is thousands of seconds and the
31P nuclear spin relaxation time exceeds 10 hours.
This system would therefore allow a large number of
gate operations within a decoherence time.
Complete polarization of the electron spins in such a
system can be achieved at a temperature of 100 mK
in a magnetic field of 2 T.
Operation of these qubits would be identical to that of
a liquid-state NMR system, i.e. in terms of radio fre-
quency pulses. However, since all qubits see the same
chemical environment, their resonance frequencies are
identical. As a way of addressing them, it may be

possible to use small electrodes, which shift the donor
electrons closer or farther away from the nuclei.

The hyperfine coupling between electrons and nuclei
would depend on the position of the electrons. These
so-called A-gates could therefore be used for address-
ing the individual qubits. Similarly J-gates would
move electron density between the donor sites, thus
inducing an indirect coupling between qubits and al-
lowing the addressing of pairs of qubits.
Very recently, significant progress was reported for the
control of interactions between electronic and nuclear
spins in a quantum-Hall type system ([33], see also
the “news and views” item [34] in the same (17 Jan
2002) issue of Nature).


