9) Kernspintomographie (MRI)

Historisches

Nobelpreis

2003: Nobelpreis für Physiologie und Medizin Paul Christian Lauterbur (* 6. Mai 1929 in Sydney, Ohio): US-amerikanischer Chemiker und Radiologe Sir Peter Mansfield (* 9. Oktober 1933 in London):

Britischer Physiker, emeritierter Professor für Physik an der University of Nottingham

Historische Bilder

1. MRI Bild 19731. Bild eines menschlichenKopfes 1978 (Clow, Young)

Heutige Bilder

Д

Herzkammer leer

Herzkammer gefüllt

Brustkorb

Gehirn

MR Tomograph

Bildgebende Verfahren in der Medizin O. Dössel

Feldstärken:

- 1,5 T ...
- **3** T
- 4 T Jülich, NIH, Minnesota, ...
- 5 T Columbia U.
- 7 T MGH, Minnesota, Magdeburg
- **8** T Ohio State U.
- 9,4 T Minnesota, Chicago

Zeeman Effekt

¹H Chemische Verschiebungen : Übersicht

schwächere Abschirmung paramagnetischer Effekt stärkere Abschirmung diamagnetischer Effekt

Drehimpuls und Drehmoment

magnetisches Radiofrequenzfeld B_1 \perp statisches Magnetfeld B_0

Präzession: Spezialfälle

freie Präzession

resonante Anregung

Nachweis

Messprinzip

Präzedierende Spins entsprechen einem rotierenden Magneten

Relaxation der Populationen

Transversale Relaxation

M. J. Graves, M. R. Prince

Relaxation im Gewebe

Einzelpuls

Zweipulsexperiment

Gradienten-Echo

Ortsaufgelöste Magnetische Resonanz

Um feststellen zu können, wo im Körper sich Spins befinden, muß das Signal ortsabhängig gemacht werden.

Gradient Magnetfeld und Resonanzfrequenz nehmen mit dem Ort zu

Der erste Schritt zum Bild Ζ

Dies geschieht über ein Magnetfeld dessen Stärke als Funktion des Ortes variiert. Dabei erfolgt eine Projektion auf die Richtung des Feldgradienten.

Das ursprüngliche Objekt wird im Rechner aus einer Vielzahl von Projektionen rekostruiert.

Gradienten

 $\omega_L = \omega_0 + \gamma G_x x$

Signal

Projektions-Rekonstruktion

Spindichte P(x, y, z)Signal s(t) = $\int \int \int P(x, y, z) e^{-i \omega_L t} dx dy dz$ = $\int P_x(x) e^{-i \gamma G_x x t} dx$

Projektion auf die x-Achse $\rho_x = \int \int \rho(x, y, z) dy dz$

Gradient in verschiedene Richtungen ϕ anlegen:

$$G_x = G \cos \Phi$$

 $G_y = G \sin \Phi$

Magnetfeldgradienten

Gradientenpulse

Reale Gradienten

Linearität: typischerweise 1-2% über 50cm DSV (diameter of a spherical volume) Folgen Nichtlinearität: Geometr. Verzerrung:

=> "gradient warping" per Computer Algorithmus:

Schichtselektion

Schichtdicke wählbar durch Gradientenstärke oder Pulslänge:

Rephasierung der z-Magnetisierung mit Recall-Gradient

Frequenzkodiergradient = <u>Auslesegradient</u>

Frequenzcodierung

Während Signalauslesens wird der Frequenzkodiergradient geschaltet.

- => Resonanzfrequenz wird ortsabhänig
- => Signal enthält verschiedene Frequenzanteile, die unterschiedlichen Orten zugeordnet werden können

FT{ <u>1</u> Signal} => Ortsauflösung in Gradientenrichtung (x-Richtung: G_x)

Unschärfen durch untersch. Frequenz im Signal auch ohne Gradient.

2D Fourier Bildgebung

1D Signal : $s_{tot} = \int dx \, dy \, dz \, \rho(\vec{r}) \cos((\omega_0 + \gamma G_x x)t)$ **2D Signal :** $s_{tot} = \int dx \, dy \, dz \, \rho(\vec{r}) \, e^{i(\omega_0 + \gamma G_y y)t_1} \, e^{i(\omega_0 + \gamma G_x x)t_2}$

X

Phasenkodierung

Gradient zwischen Anregung und Signalauslesung schalten

=> Spins bekommen ortsabhängig eine Phase aufgeprägt!

$$\phi(y) = \gamma \int dt G_y(t) \cdot y$$
$$= k_y \cdot y$$

(-> k-Raum)

Das Experiment (für eine Schicht und einen x-Wert) wird mit unterschiedlichen Phasenkodiergradienten wiederholt; die Anzahl der Phasenkodierschritte bestimmt die Ortsauflösung in Gradienten- (y-) Richtung. Die Wiederholungen kosten Zeit, erhöhen aber auch das SNR.

Phasenkodierung

D. W. McRobbie, E. A. Moore, M. J. Graves, M. R. Prince

Fourier-Bildgebung

Spin-Echo Sequenz

Typische Werte:

H. Kolem MPT0018

Signalamplitude (Echo):

Gewebeparameter

- S₀ (Protonendichte)
- T₁ (Längsrelaxationszeit)
- T₂ (Querrelaxationszeit)

Variable Parameter in Meßsequenzen:

Echozeit T_E, Repetitionszeit T_R, Schichtdicke und Schichtposition

Messfeld (field of view - FOV)

Anzahl der Frequenzkodierelemente

Anzahl der Phasenkodierschritte

=> Auflösung des Bildes in der Ebene

<u>Definitionen:</u> Signal-zu-Rausch-Verhältis SNR Kontrast C Kontrast-zu-Rausch-Verhältnis CNR

Kontrast

Räumliche Auflösung ~ Dx = FOV / n_{Frequenzkod}. Dy = FOV / n_{Phasenkod}.

$$SNR_{A} = \frac{S_{A}}{noise}$$
$$SNR_{B} = \frac{S_{B}}{noise}$$
$$C = \frac{S_{A} - S_{B}}{S_{A} + S_{B}}$$
$$CNR_{AB} = \frac{S_{A} - S_{B}}{noise}$$

MRI From Picture to Proton D. W. McRobbie, E. A. Moore, M. J. Graves, M. R. Prince

Relaxations-Kontrast

T₁ Kontrast: Präparationspuls π Spins mit unterschiedlicher longitudinaler Relaxation tragen verschieden stark bei

T₂ Kontrast: Präparationspuls $\pi/2$

Spins mit unterschiedlicher transversaler Relaxationszeit tragen verschieden stark bei

Vergleich Kontraste

TE << T ₂	$TE \approx T_2$	
T ₁ -weighted	T ₁ -w & T ₃ -w (not useful)	$TR \approx T_1$
M_0 -weighted	T ₂ -weighted	$TR >> T_1$
	1	

Kontrastvergleich

Signalamplitude:
$$S = S_0 e^{-\frac{T_E}{T_2}} \left(1 - e^{-\frac{T_R}{T_1}}\right)$$

Protonendichte-Wichtung:

T₂-Wichtung:

=> meist sehr empfindlich gegenüber krankhaften Prozessen

> (häufig viel "freies" Wasser in krankhaften Prozessen)

T₁-Wichtung:

_

U

- => T₁ hat größten Einfluss auf Kontrast
- => Struktur des Gewebes (Anatomie normal?)

Spin-Präparationsverfahren werden (als Modul) vor jede Datanaufnahme vorgeschaltet.

=> starke Beeinflussung des Kontrasts der Bilder

T1 Gewichtung

Inversion-Recovery(IR)-Präparation Vor jeder SE-Pulsfolge mit einem 180°-Puls die Magnetisierung invertieren. => Verbesserung des T₁-Kontrastes

T₁-Kontrast durch "normale" Sättigung:

T₁-Kontrast nach IR:

Fett-Unterdrückung

setzt unterschiedliche T_1 Zeiten voraus

kein Fett

kein Wasser

mit frequenzselektivem Präparationspuls wird Resonanzlinie gesättigt (= deren Magnetisierung unterdrückt)

Vor jedem Zyklus Puls auf der Resonanzfrequenz des Fettes einstrahlen.

- => Fettsignal wird von eigentlichem Anregungspuls nicht mehr "erfasst"
- => Fettsignal erscheint auf Bild dunkel

Kontrastmittel

Meiste Körpergewebe sind diamagnetisch.

Gadolinium: Paramagnetisch (7 ungepaarte Elektronen) **Elementares G.: toxisch** 60 => Chelatkomplex % Signaländerung k a k t **Biologische Halbwertszeit 1.5 h** 0.01 **Geringe Konzentration:** reduziert hauptsächlich T₁ in Umgebung

Fe als Kontrastmittel

Eisenoxid:

Super-Paramagnetisch Injiziert als Kohlenhydratummantelte Partikel in Lösung; Anlagerung in normalem Gewebe in Leber und Milz

Berechnung: T_2 -gewichtete Spin-Echo-Sequenz $T_R=10s$, $T_E=100ms$ Gewebe: $T_1=800ms$ $T_2=75ms$

Reduziert T₂^{*}, T₂, T₁ Wirkt über vielfaches Partikelvolumen.

MRI From Picture to Proton D. W. McRobbie, E. A. Moore, M. J. Graves, M. R. Prince

Der k-Raum

Die Datenaufnahme erfolgt im sogenannten k-Raum. Aus diesen Rohdaten erfolgt die Rekonstruktion des Bildes im "realen" Raum durch 2dimensionale Fourier-Transformation.

Meßsignal:

$$S(t;k_x,k_y) = \iint dx \, dy \, M_{xy}(x,y) \, e^{-i(k_x x + k_y y)}$$

mit

$$k_{\alpha}(t) := \gamma \int dt \, G_{\alpha}(t)$$

Aufnahme im k-Raum

Scan Zeit

MRI From Picture to Proton D. W. McRobbie, E. A. Moore, M. J. Graves, M. R. Prince Zusammenhang zwischen Phasen- und Frequenzkodiergradient und dem zugehörigen Pfad im k-Raum. (Für ein Gradientenecho)

Erinnerung:

Frequenzkodierung => 1 (Bild-)Zeile! Phasenkodierung muß n mal wiederholt werden für vollständiges 2-dimensionales Bild.

Datenaufnahme

MRI From Picture to Proton D. W. McRobbie, E. A. Moore, M. J. Graves, M. R. Prince

k-/Ortsraum

Zusammenhang Parameter in k-Raum und Objektraum:

Abtastraten:

$$FOV_x = 1 / \Delta(k_x)$$

 $FOV_y = 1 / \Delta(k_y)$

Pixel / Voxel

MRI From Picture to Proton D. W. McRobbie, E. A. Moore, M. J. Graves, M. R. Prince

Informationsgehalt im k-Raum

kleine k-Werte:

tiefe (Orts-)Frequenzen

Signal- und Kontrastinformation, keine Details

MRI From Picture to Proton D. W. McRobbie, E. A. Moore, M. J. Graves, M. R. Prince

große k-Werte:

hohe (Orts-)Frequenzen

Gewebegrenzen gut sichtbar, schlechtes SNR, keine Kontrastinfo

Auflösung und Rauschen

Protonendichte (PD)und T₂-gewichtete Bilder mit gleicher Gesamtzeit für die Scans:

Höhere räumliche Auflösung führt zu größerem Rauschen (geringeres SNR)

MRI From Picture to Proton D. W. McRobbie, E. A. Moore, M. J. Graves, M. R. Prince

(a)

256x256

PD

(d)

Hohe Frequenzen

Daten am Rand des k-Raumes (hohe (Orts-) Frequenzen) enthalten Information über die Bildauflösung (Ecken und Kanten) -> Ausnutzung in digitaler Bildverarbeitung (Filter)

MRI From Picture to Proton D. W. McRobbie, E. A. Moore, M. J. Graves, M. R. Prince

Es gibt 3 Gruppen von Artefakten bei der MRI:

Bewegungsartefakte durch physiologische oder unwillkürliche Bewegung des Patienten

=> führt zu sogenannten "Ghosts" entlang der Phasenkodierrichtung

Inhomogenitätsartefakte durch Fehlerhaftigkeit der Geräte und durch Suzeptibilitätseffekte innerhalb des Körpers

=> verursacht Intensitätsänderungen und Bildverzerrungen

Digitale Bildartefakte stammen von der Rekonstruktion des Bildes mit Hilfe der Fourier-Transformation

=> viele verschiedene Arten von Bildfehlern

durch physiologische oder unwillkürliche Bewegung des Patienten

=> führt zu sogenannten "Ghosts" entlang der Phasenkodierrichtung

Triggerung als mögliche Lösung:

MRI From Picture to Proton D. W. McRobbie, E. A. Moore, M. J. Graves, M. R. Prince

TR = R-R Intervall; typischerweise 600-1000ms; also T₁-Gewichtung

Verdauung => kontinuierliche, zufällige Bewegung, keine Triggerung möglich

<u>Lösung</u>:Verdauungshemmende Medikamente (15-20min) oder sehr schnelle Pulssequenzen (FSE, HASTE)

Chemische Verschiebung

Chemische Verschiebungs-Artefakt

C.V. => Fett scheint an anderer Position zu sein (Frequenzkodierung)

Je nach Stärke der Verschiebung: <u>Artefakt</u>: helles oder dunkles Band auf gegenüberliegenden Seiten einer Struktur, oder sogar "ghost image"

MRI From Picture to Proton D. W. McRobbie, E. A. Moore, M. J. Graves, M. R. Prince

Mögliche Lösung: höhere Empfängerbandbreite benutzen Nachteil: dadurch auch geringeres SNR

Partialvolumen - Artefakte

Partialvolumen-Artefakt, Überlapp-Artefakt

Unterschiedliche Gewebetypen in einem Voxel => Partialvolumen-Artfakt (Typ. Voxelgröße: 1mm*1mm*5mm) Lösung: Schichtdicke anpassen

Verwandtes Problem bei Multi-Schicht-Verfahren: Überlapp der Signale von benachbarten Schichten. Ursache: nichtideale Pulse

Folge: Gewebe in Überlapp-Region kann nicht relaxieren => Reduzierte Signalintensität

Lösung: Größere Schichtabstände

Phasenabtastungs-Artefakt

- **Bsp.:** Hineinfalten von Signalen, die außerhalb des FOV liegen, aber detektiert werden.
- Lsg.: In Frequenzkodierrichtung einfach Erhöhung der Abtastrate.

In *Phasenkodierrichtung* ist dies mit einer Erhöhung der Messßzeit verbunden und daher nicht immer möglich.

Weitere Lösungen:

Sättigung der Signale außerhalb des FOV, Vergrößerung des FOV **N/2 - ghost:**

Suszeptibilitätsartefakte

MRI From Picture to Proton D. W. McRobbie, E. A. Moore, M. J. Graves, M. R. Prince

Metall-Artefakt => Region ohne Signal, Kante mit hoher Signalintensität, geometrische Verzerrungen

Suszeptibilitäts-Artefakte haben ähnliche Auswirkungen, aber subtiler

Punktartefakt im k-Raum

z.B. defekte RF-Spule

MRI From Picture to Proton D. W. McRobbie, E. A. Moore, M. J. Graves, M. R. Prince

Schnelle Datenaufnahme

Konventionelle Spin-Echo-Sequenz: zu langsam für viele praktische Zwecke Grund: Zwischen 2 Phasenkodierungsschritten muss genug Zeit sein, damit sich die Gleichgewichtsmagnetisierung aufbauen kann. (-> bestimmt durch Eigenschaften des Gewebes -> unveränderbar)

Mögliche Lösungsansätze:

Parallele Datenaufnahme verschiedener Datenzeilen: Turbo-Spin-Echo, ...

Kleine Flipwinkel (kleine Änderung von M)

-> Gradienten-Echo-Sequenzen

MRI From Picture to Proton D. W. McRobbie, E. A. Moore, M. J. Graves, M. R. Prince

Allgemeine Spin-Echo Sequenz

Allgemeine Spin-Echo-Sequenz mit räumlicher Sättigung um unerwünschte Artefakte zu unterdrücken, Fettsignal-Unterdrückung (bzw. Sättigung) und Präparationsverfahren zur Kontrastverbesserung:

Inkrementierung des

Multi Spin-Echo

Multi-Spin-Echo: Innerhalb der Wiederholungszeit T_R hat man Zeit für weitere Echos, die zu anderen Schichten gehören, solange die T_2 -Relaxation dies zuläßt:

Gradientenecho

Rephasierung durch Gradient statt durch 180°-Puls

Geschwindigkeitsvorteil durch kleine Flipwinkel (statt 90°-Puls) => kurze T_R möglich!

Nach einer Reihe von RF-Pulsen stellt sich ein Gleichgewicht ein: Erholung nach T_R gleicht exakt den Effekt der Anregung aus T_2^* -, T_1 -, PD- und sogar in einigen Fällen T_2 -Gewichtung anwendbar.

Optimierte Anregung

Verbesserung des Signal-zu-Rausch-Verhältnisses:

Idee: schneller pulsen, d.h. T_R verkleinern? aber: Sequenz von 90° Pulsen führt zu Sättigung

Idee: kleinere Flipwinkel → erlaubt schnellere Wiederholung, liefert aber kleineres Signal

(Fast Low-Angle SHot)

FLASH

Schnelle Bildgebung

EPI: Echo-Planar-Imaging

Erzeugung einer Abfolge von Echos (vgl. CPMG) mit RF- oder mit G_x Gradienten-Pulsen

GRASE

RARE

Fluss-Bildgebung

Phasenverschiebung ortsfester Spins wird refokussiert

bewegte Spins liefern Phasenverschiebung

Phasenkontrast:

Angiographie

G

bipolarer Zusatz-Gradient: Phase nur der sich bewegenden Spins ändert sich

Vergleich mit Bild ohne Zusatz-Gradient:Differenz liefert Information über Fluss

Fluss oder Diffusion ?

Teflonröhre mit

Geschwindigkeitskompensation

Polarisation

"Hyper-Polarisation"

Kernspinpolarisation $(N^+ - N^-) / (N^+ + N^-) \sim 10^5$ größer als im Boltzmann-Gleichgewicht ???

Verdünntes Gas und Protonen im Wasser liefern dann etwa gleich intensives Signal !!!

Hyperpolarisierte Edelgase

Optisches Pumpen

A. Kastler, J. Phys. <u>11</u>, 255 (1950)

³He I = $\frac{1}{2}$ 0% 32.4 MHz/T ¹²⁹Xe I = $\frac{1}{2}$ 26.44% 11.8 MHz/T

Spin-Austausch-Transfer

Rb + ³He → Rb + ³He Alternative: Metastabilitäts-Pumpen Optische Anregung nach Gasentladung Vorteil: kein Alkali-Metall erforderlich

 T_1 Wechselwirkung mit Lagergefäß (mehrere Tage)im Gewebe T_1 im sec-min BereichIn der Lunge ist ${}^{3}\text{He-}T_1^{-1} \sim O_2$ -Konzentration

³He: $\omega_L = 1600$ Hz im Erdfeld

Lungenbild mit ³He

In der funktionellen NMR Bildgebung (f-MRI) nutzt man die Änderung der NMR Signale aufgrund der erhöhten Sauerstoffzufuhr.

B lood O xygen L evel D ependent fMRI

Desoxyhämoglobin ist magnetisch, Oxyhämoglobin nicht. BOLD misst das Verhältnis beider Formen.

Funktionelle Bildgebung

2 mm "Schnitte"

BOLD

SEEP

manuelle Aktivität von 12 Probanden 6 Probanden betrachten ein Schachbrett, das mit 8 Hz alterniert

In Vivo Spektroskopie

Nicht-Medizinische Anwendungen

Fallender Wassertropfen

Strömung im Innern

Phys. Rev. Lett. <u>87</u>, 144501 (2001).