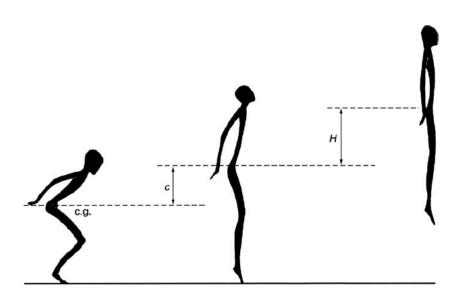
7. Übung zur Medizinphysik

SS 2014

Ausgabe: 19.05.2014

Abgabe: bis 26.05.2014 16:00 Uhr


Prof. Dr. D. Suter

Aufgabe 1: Vertikaler Hochsprung

3 Punkte

Für einen vertikalen Hochsprung aus der Hocke kann schematisch der in der Abbildung dargestellte Bewegungsablauf verwendet werden.

- a) Leiten Sie anhand der gegebenen Skizze und dem Gewicht m des Springers einen Ausdruck für die Sprunghöhe H in Abhängigkeit der Absprungkraft F und der Höhe c her. Die Absprungkraft soll während des gesamten Absprungvorgangs konstant sein.
- b) Schätzen Sie die Sprunghöhe ab, wenn nach Studien ein gut trainierter Springer auf der Erde eine Absprungkraft von $F=2\cdot mg$ erreicht.
- c) Wie würde sich die Sprunghöhe bei gleicher Absprungkraft auf dem Mond verändern?

Aufgabe 2: Eisenbedarf

3 Punkte

Der größte Anteil (2/3) des Eisenbedarfs des Menschen wird für die Neubildung von Hämoglobin benötigt. Im gesunden Zustand benötigt der Mensch $1,5\,\mathrm{mg}$ Eisen pro Tag. Für die Rechnung können folgende Informationen nützlich sein:

- \bullet Der Mensch besitzt $3\cdot 10^{13}$ Erythrozyten, die eine Lebensdauer von 120 Tagen haben.
- Die Masse eines Erythrozyten $\approx 3\cdot 10^{-11}$ g besteht zu 35% aus Hämoglobin. Dessen Molmasse beträgt 65 000 g/mol.
- a.) Berechnen Sie den Anteil des wiederverwerteten Eisens, der bei der normalen Neubildung des Blutes verwendet wird.

- b.) Bestimmen Sie anschließend, wie viel Prozent seines Blutes der Mensch täglich verlieren kann ohne dass es zu einer Anämie führt, wenn er anstelle der 1,5 mg Eisen pro Tag, 2 mg Eisen pro Tag zu sich nimmt.
- c.) Bei der Erkrankung Polycythämie wird die Anzahl der roten Blutkörperchen um 60% erhöht. Als direkte Behandlungsmethode wird das Blut regelmäßig abgenommen. Dabei werden etwa $2,5\cdot 10^{12}$ Erythrozyten abgelassen. Wie oft muss der Patient innerhalb von 4 Monaten zur Blutabnahme um eine gesunde Erythrozytenanzahl zu erhalten?

Aufgabe 3: Viskosität von Blut

3 Punkte

Für ein Experiment zur Messung von Strömungen in Blutgefäßen soll ein Gemisch aus Wasser und Glycerin verwendet werden, welches bei 20°C annähernd die gleiche Viskosität wie Blut haben soll. Dazu werden 3 Messungen mit den Mischungsverhältnissen von Glycerin zu Wasser von eins zu vier, eins zu eins und vier zu eins an einem Kugelfallviskosimeter durchgeführt. Es ergeben sich Fallgeschwindigkeiten von $v_1=8,58\frac{\rm m}{\rm s},\,v_2=2\frac{\rm m}{\rm s}$ und $v_3=0,24\frac{\rm m}{\rm s}$ für eine Eisenkugel mit dem Durchmesser $d_{\rm Fe}=0,2$ cm in dem jeweiligen Gemisch. ($\rho_{\rm Fe}=7,87\frac{\rm g}{\rm cm^3}$, $\rho_{\rm H_2O=0,99}\frac{\rm g}{\rm cm^3}$ und $\rho_{\rm Glycerin}=1,26\frac{\rm g}{\rm cm^3}$)

$$(\rho_{\rm Fe}=7,87\frac{\rm g}{{
m cm}^3}~,\,\rho_{\rm H_2O=0,99}\frac{\rm g}{{
m cm}^3}~{
m und}~\rho_{\rm Glycerin}=1,26\frac{\rm g}{{
m cm}^3})$$

- a) Neben dem Kugelfallviskosimeter wird das Kapillarviskosimeter nach Ubbelohde verwendet. Leiten Sie, ausgehend von der Hagen-Poiseuille-Gleichung, einen Ausdruck für die dynamische Viskosität η als Funktion der Dichte ρ und der Laufzeit Δt in einem Kapillarviskosimeter her.
- b) Bestimmen Sie die Viskosität der Gemische in dem Kugelfallviskosimeter mit den Angaben aus der Vorlesung. Eignet sich eines der Gemische als experimenteller Ersatz für Blut? Wenn ja, welches?