Nichtklassisches Licht

Experimentell beobachtbare Konsequenzen der quantenmechanischen Natur des Lichtes

Die Natur des Lichtes

Welle oder Teilchen ?

Robert Hooke (1635-1703)

Beobachtet Interferenz und Beugung; Wellentheorie

Isaac Newton (1642-1727)

Teilchentheorie mit WellenASPEKTEN

<u>Thomas Young (1773-1829)</u> <u>Augustin Jean Fresnel (1788-1827)</u>

Wellentheorie erklärt Interferenzeffekte

James Clerk Maxwell (1831-1879)

Elektrodynamik: Ausbreitung elektromagnetischer Wellen

Die Natur des Lichtes

Welle oder Teilchen?

Max Karl Ernst Ludwig Planck (1858-1947)

1900: Erklärung der Schwarzkörperstrahlung mit Hilfe von 'Lichtquanten'

Albert Einstein (1979-1955)

1905: Erklärung des photoelektrischen Effekts mit Hilfe von 'Lichtquanten'. Ab 1926 werden diese als 'Photonen' bezeichnet (G.N. Lewis).

Elektromagnetisches Feld

Harmonischer Oszillator

$$\mathcal{H} = \frac{1}{2} \int_{V} dV (\epsilon_0 E_0^2 + \mu_0 H_0^2)$$

$$\mathcal{H} = \frac{1}{2}(\Omega^2 q^2 + p^2)$$

Identifizieren

$$\int_{V} dV(\epsilon_0 E_0^2) = \Omega^2 q^2 \qquad \int_{V} dV(\mu_0 H_0^2) = p^2$$

$$a = \frac{1}{\sqrt{2h\Omega}}(\Omega q + ip) \qquad a^{\dagger} = \frac{1}{\sqrt{2h\Omega}}(\Omega q - ip)$$

Quanten-Elektrodynamik

einige Unterschiede zur Maxwell-Theorie

Die Energie des Strahlungsfeldes ist quantisiert Nullpunktsenergie $\hbar\omega/2$ Heisenberg-Beziehungen: Intensität / Phase, Quadraturamplituden

(halb-) klassischer Limit

für grosse Quantenzahlen (hier v.a. grosse Photonen-zahlen) und niedrige Photonenengien kann das Licht in guter Näherung klassisch beschrieben werden

Unschärfe

monochromatisches Feld in komplexer Schreibweise

 $\mathbf{E}(t) = \mathbf{E}_{\mathbf{C}} \cos(\omega t) + \mathbf{i} \mathbf{E}_{\mathbf{S}} \sin(\omega t)$

Kohärente Zustände können in einer Basis von Zahlzuständen geschrieben werden als

$$|\alpha\rangle = e^{-|\alpha|^2/2} \frac{\alpha^n}{\sqrt{n!}} |n\rangle$$

R.J. Glauber, Phys.Rev. <u>130</u>, 2529; <u>131</u>, 2766 (1963).

Eigenschaften

- Zustand minimaler Unschärfe: $\Delta p \Delta q = \frac{\hbar}{2}$
- O Der Schwerpunkt gehorcht den Maxwell Gleichungen
- Schließt den Vakuumzustand ein

Poisson Verteilung

Kohärente vs. thermische Zustände

Intensitätskorrelation

Resonanzfluorezenz

Photonenstatistik

Wie gross ist die Wahrscheinlichkeit $P(\tau)$, innerhalb einer Zeit τ nach dem Nachweis eines Photons ein zweites zu beobachten?

Fluoreszenz Antibunching

H.J. Kimble, M. Dagenais, and L. Mandel, Phys. Rev. Lett. <u>39</u>, 691 (1977)

Messung an einem Atomstrahl mit niedriger Intensität

experimenteller Aufbau

Gespeichertes Ion

 $g^{(2)}(t)$

Basche et al., Phys. Rev. Lett. 69, 1516-1519 (1992).

PL von CdSe / ZnS quantenpunkten

Einzelner CdSe/ZnS Quantenpunkt

Pulsabstand

Michler et al., Nature <u>406</u>, 968 (2000).

Experimente mit 1 Photon

P. Grangier, G. Roger, and A. Aspect, *Europhys. Lett.* <u>1</u>, 173 (1986).

C.K. Hong and L. Mandel, Phys. Rev. Lett. 56, 58 (1986).

Photonen als Teilchen

Einzelne Photonen:Teilchen

Welle und Teilchen!

2-Photonenquelle

Reduziertes Rauschen

Y. Yamamoto, S. Machida, and W.H. Richardson, Science 255, 1219 (1992).

EPR Korrelationen

Gedankenexperiment:

EPR benutzten dieses Gedankenexperiment um zu zeigen, dass die Quantenmechanik nicht vollständig sei *A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev.* 47, 777 (1935)

Bell zeigt, welche Werte erhalten werden können, wenn 'lokale, realistische' Theorien (im Sinne von EPR) gelten J.S. Bell, Physics 1, 195 (1965)

EPR Widerlegt

Aspect und Mitarbeiter erhalten experimentelle Resultate, welche mit der Quantenmechanik übereinstimmen, nicht aber mit klassischen Theorien

A. Aspect, P. Grangier, and G. Roger, Phys. Rev. Lett. 49, 91 (1982)

Zerlegung der Feldamplitude:

klassisch: $E(t) = E_c \cos(\omega t) + i E_s \sin(\omega t)$

Vertauschungsrelation für a, a[†]: [a,a[†]]=1

Unschärfenrelation für Feldamplituden:

$$\sqrt{\langle \Delta E^2(0) \rangle \langle \Delta E^2(\phi) \rangle} \ge \frac{1}{4} \epsilon_c^2 |\sin \phi|$$

Gequetschtes Licht

Kohärenter Zustand

symmetrischer Zustand minimaler Unschärfe

 $\Delta E_{C} = \Delta E_{S}$

Gequetschter Zustand

asymmetrischer Zustand minimaler Unschärfe $\Delta E_{C} < \Delta E_{S}$

Nichtklassische Zustände

Theorie: Quetschen des Vakuumzustandes

Experiment: Nichtlineare Optik z. B. Intensitätsabhängige Phasenverschiebung **E(t)** Es hohe Intensität \Rightarrow große Phase geringe Intensität ⇒ kleine Phase **E(0)** E

Parametrischer Oszillator

Photonenkorrelation

Wenn der Zustand in Richtung der kohärenten Anregung gequetscht ist, zeigt der Zustand 'antibunching'

Zustandstomographie

Z. Vgl. : Röntgen-CT

H.P. Yuen and V.W.S. Chan, Optics Letters 8, 177 (1983).

implementiert die Messung einer Quadraturamplitude
unabhängig vom Rauschen des Lokaloszillators

Squeezing Experiment

Anwendung: Spektroskopie

Spectroscopy with Squeezed Light

PRL 68, 3020 (1992).

E. S. Polzik, J. Carri, and H. J. Kimble

Squeezing Experimente

Vierwellenmischung an einem Na-Atomstrahl

R.E. Slusher, L.W. Hollberg, B. Yurke, J.C. Mertz, and J.F. Valley, Phys. Rev. Lett. <u>55</u>, 2409 (1985).

O Beobachteter Rauschpegel 7% unter Schrotrauschen

• Entspricht 20% Squeezing

M. Xiao, L.A. Wu, and H.J. Kimble, Phys. Rev. Lett. <u>59</u>, 278 (1987). *P. Grangier, R.E. Slusher, B. Yurke, and A. LaPorta, Phys. Rev. Lett.* <u>59</u>, 2153 (1987).

Grangier et al., Phys. Rev. Lett. <u>59</u>, 2153 (1987).

Gravitationswellen

Verschmelzen von Neutronensternen

Wirkung und Nachweis

δI/I ≤ 10⁻²⁰

Detektoren

im Bau

/////

existieren

Garching 30 mGlasgow 10 mTokio 10 mCaltech 40 m

GEO (Hannover) 3 km LIGO (USA) 2x4 km VIRGO (Pisa) 3 km Japan, Australien

 $\delta \mathbf{I} \propto \frac{\mathbf{I}}{2\sqrt{\mathbf{N}}}$

Rückwirkung von Messungen

Photonen werden bei der Messung vernichtet

Levenson, Shelby, Reid, and Walls, Phys. Rev. Lett. 57, 2473 (1986).

- Rückwirkungsfrei für Intensität
- Phase wird gestört

QND für Squeezing

Reduziertes Rauschen

mit Zwillingsstrahlen ('twin beams')

Empfindlichkeitssteigerung

Zusammenfassung

- Wo liegen die Grenzen der klassischen Theorie ?

Die Maxwell Gleichungen sind lokal Korrelationen zwischen Photonen werden deshalb nicht erklärt. Bsp: EPR-Korrelationen, Photon-Antibunching, Squeezing

O Nullpunktenergie des freien Feldes

Die Wechselwirkung des Vakuumzustandes mit materiellen Systemen führt zu spontaner Emission, Lamb Shift, g-2

- Wann hilft die Quantenmechanik weiter ?

• Empfindlichkeit über der "Schrotrauschgrenze" Zustände des elektromagnetischen Feldes, die klassisch nicht beschreibbar sind ("squeezed states"), ermöglichen Experimente mit einer Empfindlichkeit, die unterhalb der Schrotrauschgrenze liegt.

Beispiele: Laser-Gyroskop, Gravitationswellendetektor, kohärente optische Kommunikation

Weiterführende Literatur

Photonenstatistik

D.F. Walls, 'Evidence for the Quantum Nature of Light', Nature <u>280</u>, 451-454 (1979).

Quantenoptik

P. Meystre and M.Sargent III, 'Elements of Quantum Optics', Springer, Berlin (1990).

Nichtlineare Optik

Y.R. Shen, 'The principles of Nonlinear Optics', Wiley, New York (1984).

Squeezing

D.F. Walls, 'Squeezed States of Light', Nature <u>306</u>, 141-146 (1983).

P. Grangier, 'Spectroscopy Squeezed Beyond the Shot-Noise Limit', Physics World <u>Aug.1992</u>, 18-19 (1992).

QND

V.B. Braginsky, Y.I. Vorontsov, and K.S. Thorne, 'Quantum Nondemolition Measurements', Science <u>209</u>, 547 (1980).