

5. Lichtkräfte und Laserkühlung

5.1 Lichtkräfte

- 5.2 Dopplerkühlung
- 5.3 Konservative Kräfte

Kräfte und Potenzial

Impulsübertrag

Beschleunigung

maximaler Effekt:

 $n \le 10^8$ Absorptionszyklen pro Sekunde

resultierende Beschleunigung =

$$\frac{n\hbar k}{\sec M_{atom}} = 1.7 \cdot 10^{6} \frac{m}{\sec^{2}}$$

 $\sim 170000 \text{ g}$

Space shuttle : 3g

Das erste Experiment

(Untersuchungen zur Molekularstrahlmethode aus dem Institut für physikalische Chemie der Hamburgischen Universität. Nr. 30.)

Experimenteller Nachweis des Einsteinschen Strahlungsrückstoßes.

Von R. Frisch in Hamburg.

Mit 6 Abbildungen. (Eingegangen am 22. August 1933.)

Ein langer dünner Strahl von Na-Atomen wird mit Resonanzlicht bestrahlt; die Ablenkung der Atome infolge der Impulsübertragung bei der Absorption und Emission wird nachgewiesen.

Das erste Experiment

- Fig. 5. Versuch mit seitlicher Beleuchtung. Abszisse: Stellung des Auffängers. Ordinate: Elektrometerausschlag.
- • Intensität ohne Beleuchtung.
- -o- Wirkung der Beleuchtung.
- ---- Summe dieser beiden, also Intensität mit Beleuchtung.

- ---- Strahl mit Beleuchtung.
 - ----- 2/3 vom Strahl ohne Beleuchtung.
- ····· Differenz dieser beiden, also Verteilung der abgelenkten Atome.

R. Frisch, Z. Phys. <u>86</u>, 42-48 (1933).

Spontane Streukraft

Dopplerverschiebung

Geschwindigkeit

$$dN(v) = N\left(\frac{m}{2\pi kT}\right)^{3/2} e^{-mv^2/2kT}v^2 dv$$

Rückstoßverschiebung

Beispiel eines "Zeeman-slower"s

Optische Molasse

Optische Melasse

Optische Molasse

$$F_{om} = \hbar k \Gamma_1 \omega_x^2 \left(\frac{1}{\Gamma_1^2 + 4(\Delta \omega_0 + kv)^2} - \frac{1}{\Gamma_1^2 + 4(\Delta \omega_0 - kv)^2} \right)$$

Geschwindigkeitsdiffusion

Historische Entwicklung

- 1. Vorschlag : T.W. Hänsch and A.L. Schawlow (1975) D. Wineland and H. Dehmelt, (1975).
- 1. Experiment: S. Chu, L. Hollberg, J.E. Bjorkholm, A. Cable, and A. Ashkin (1985).

" In virtually all respects, the optical cooling of atoms has worked far better than anticipated; the work is a rare but spectacular violation of Murphy's law" S. Chu, Science 253, 861 (1991)

Magnetfeld-Gradient

Magneto-Optische Fallen

Abbremsen + Einfangen

lonenkristalle

50 µm

H. Walther, MPQ Garching

Atomarer Springbrunnen

Atomarer Springbrunnen

Bose-Einstein Statistik

nicht-unterscheidbare Bosonen

Hohe Temperatur Tiefe Temperatur T_{crit} : $l_{DB} \sim d$ T=0

thermische Geschwindigkeit v "Kugeln"

de Broglie
Wellenlänge
$$h_{dB} = \frac{h}{mv} \propto \frac{1}{\sqrt{T}}$$

"Wellennakete"

Bose-Einstein Kondensation Reines Bose-Einstein Kondensat Makroskopischer Quantenzustand

Nobelpreisvortrag Wolfgang Ketterle

gepulster Atomlaser mit 200 Hz

Atomlaser

Volume 82, NEVHOR 15.

PHYSICAL REVIEW LETTERS

12 A 50 B

2 mm

Atom Laser with a cw Output Coupler

Immanuel Bloch, Theodor W. Hänsch, and Tilman Esslinger Sektion Physik, Ludvig-Maximilians-Universität, Schellingstrasse 44III, D-80799 Monich, German and Max Plonek Institut für Quantenauch, D-85735, Garching, Germany (Received 3 December 1998)

Materie-Verstärker

"Input" wurde ohne Laser durch das **BEC** geschickt

Interferenz 2er BEC's

"Flusslinien" in rotierenden BEC's

Induzierter Dipol

Optische Kräfte

Kraft beim Fokus

Optische Pinzetten

S. Chu, '*The manipulation of neutral particles*', Rev. Mod. Phys. <u>70</u>, 685-706 (1998).

S. Chu, '*Laser trapping of neutral particles*', Scientific American <u>February 1992</u>, 49-54 (1992).

ORGANELLE inside a protozoan was dragged to one end of the cell using an optical tweezers, as shown in the first three photographs. The image seen at the far right shows the organelle after it was released.

Anwendung

Anwendung: Messung der Elastizität einer äußeren Haarzelle des Innenohrs

http://www.ruf.rice.edu/~amistry/BIOE577/Optical_Tweezers.htm

Stehwellen

Alt et al., PRA 67, 033403 (2003)

Atomare Sortiermaschine

Reflexion von Atomen

Atom-Resonator

Cesium Atoms Bouncing in a Stable Gravitational Cavity

C. G. Aminoff,* A. M. Steane, P. Bouyer, P. Desbiolles, J. Dalibard, and C. Cohen-Tannoudji Laboratoire de Spectroscopic Hertzienne de l'Ecole Normale Supérieure and Collège de France, 24 rue Lhomond, F-75231 Paris CEDEX 05, France (Received 2 August 1993)

Springende Atome

Springendes BEC

Bongs et al., Phys. Rev. Lett. <u>83</u>, 3577 (1999).

Strahlteiler

Linsen und Wellenleiter

