

- 2.1 Grundlagen
- 2.2 Lasertypen
- 2.3 Lasermedien
- 2.4 Optische Frequenzmischung

Inhalt

Absorption und Emission

spontane Emission

Absorption und Emission

Ausgangsleistung

P_{ein}

Historische Entwicklung

- **1917** Albert Einstein liefert die erste theoretische Beschreibung der stimulierten Emission
- **1958** Vorschlag zur Verstärkung durch stimulierte Emission im optischen Bereich (A.L. Schawlow und C.H. Townes)
- **1959** Vorschlag zur Verwirklichung eines Gaslasers (A. Javan)
- **1959** Vorschlag zur Verwirklichung eines Halbleiterlasers (N.G. Basov, B.M. Wul, J.N. Popov)
- **<u>1960</u>** erster Festkörperlaser (Rubinlaser) (T.H. Maiman)
- **<u>1961</u>** erster He-Ne Laser (A. Javan, W. Bennett, D.R. Herriott)
- **1964** Nobelpreis an C.H. Townes , N.G. Basov , A.M. Prokhorov

"for fundamental work in the field of quantum electronics, which has led to the construction of oscillators and amplifiers based on the maser-laser principle"

Eigenschaften von Laserlicht

Bandbreite

Resonatormoden

λ

Stabile Resonatoren

instabiler Resonator

Transversale Moden

Modensprünge

Variable Modenstruktur in einem Ar-Ionen Laser

Polarisationsmoden in HeNe Laser

Modensprünge

Modenselektion

Schema eines Farbstoff-Ringlasers

Linienbreiten

Resultierender Puls eines Rubinlasers mit "spiking"

Güteschaltung

Zeit t

Modenkopplung

Wie lang ist 1 fs ?

as-Puls

Lasermedien

Laserzyklus in Molekül

Rhodamin 6G

Laserfarbstoffe

Farbstofflaserdaten bei verschiedenen Pumpquellen

Pumplaser

Pumpe	Abstimm- bereich [nm]	Puls- dauer [ns]	Spitzen- leistung [W]	Puls energie [mJ]	Pulsfolge– frequenz [s ⁻¹]	Mittlere Ausgangs- leistung [W]
Exzimer- Laser	370-985	10-200	≤10 ⁷	≤ 300	20-200	0.1-10
N ₂ -Laser	370-1020	1-10	<105	<1	<10 ³	0.01-0.1
Blitz- lampen	300~800	300 - 10000	10 ² - 10 ⁴	<5000	I – 100	0.1-200
Ar ⁺ Laser Kr ⁺ Laser	400-1100	cw	cw	_	cw	0.1-5
Nd: YAG- Laser $\lambda/2:530$ nm $\lambda/3:355$ nm	400-920	10-20	10 ⁵ - 10 ⁷	10-100	10-30	0.1 - 1
Kupfer dampf-	530-890	30-50	$\simeq 10^4 - 10^5$	~ImJ	<u>≤</u> 10 ⁴	≤10

laser

Niveauschema

Charakteristische Daten einiger Excimerlaser

Lasermedium	 F ₂	ArF	K.rCl	KıF	XeCl	XeF
Wellenlänge nm]	157	193	222	248	308	357
Pulsenergie [mJ]	15	≤500	<u><</u> 60	≤1000	≤500	200

Pulsbreiten: 10-200 ns Repetition: 1-200 Hz, je nach Ausstattung Strahldivergenz: 1x3 mrad Schwankung der Pulsenergie von Puls zu Puls : ca. 3-10 % Zeitjitter: ~1-3 ns

HeNe-Laser

HeNe-Laser

Rubinlaser

Seltene Erden

Energie / 1000 cm⁻¹

Frequenzverdoppelter Festkörperlaser

Vibronische Verbreiterung

Verstärkungsbandbreiten

Strom in Durchlassrichtung

ohne äußere Spannung

Laserdioden

Halbleiterlaser

Laserdioden Arrays

Freie Elektronen Laser

Nichtlineare Optik

Nichtlineare Optik

3-Wellenmischung Summenfrequenz-**2te Harmonische** Differenzfrequenzerzeugung erzeugung (\mathbf{w}) ω ω $\omega_1 +$ 2ω ω ω g g g

Phasenanpassung

Optischer parametrischer Oszillator

